云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題含解析_第1頁(yè)
云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題含解析_第2頁(yè)
云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題含解析_第3頁(yè)
云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題含解析_第4頁(yè)
云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

云南省麗江市重點(diǎn)中學(xué)2025年高三下學(xué)期期中考試(數(shù)學(xué)試題文)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.當(dāng)時(shí),函數(shù)的圖象大致是()A. B.C. D.2.已知、分別是雙曲線的左、右焦點(diǎn),過(guò)作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點(diǎn)、,過(guò)點(diǎn)作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.3.2019年10月17日是我國(guó)第6個(gè)“扶貧日”,某醫(yī)院開(kāi)展扶貧日“送醫(yī)下鄉(xiāng)”醫(yī)療義診活動(dòng),現(xiàn)有五名醫(yī)生被分配到四所不同的鄉(xiāng)鎮(zhèn)醫(yī)院中,醫(yī)生甲被指定分配到醫(yī)院,醫(yī)生乙只能分配到醫(yī)院或醫(yī)院,醫(yī)生丙不能分配到醫(yī)生甲、乙所在的醫(yī)院,其他兩名醫(yī)生分配到哪所醫(yī)院都可以,若每所醫(yī)院至少分配一名醫(yī)生,則不同的分配方案共有()A.18種 B.20種 C.22種 D.24種4.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個(gè)面所在的平面與直線相交的平面?zhèn)€數(shù)分別記為,則下列結(jié)論正確的是()A. B. C. D.6.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件7.下列說(shuō)法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題8.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.49.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知集合,,若,則()A.或 B.或 C.或 D.或11.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.12.命題“”的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在中,已知,為邊的中點(diǎn).若,垂足為,則的值為_(kāi)_.14.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.15.若雙曲線的離心率為,則雙曲線的漸近線方程為_(kāi)_____.16.如圖,四面體的一條棱長(zhǎng)為,其余棱長(zhǎng)均為1,記四面體的體積為,則函數(shù)的單調(diào)增區(qū)間是____;最大值為_(kāi)___.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).18.(12分)已知數(shù)列的前n項(xiàng)和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)令.求數(shù)列的前n項(xiàng)和.19.(12分)已知A是拋物線E:y2=2px(p>0)上的一點(diǎn),以點(diǎn)A和點(diǎn)B(2,0)為直徑兩端點(diǎn)的圓C交直線x=1于M,N兩點(diǎn).(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點(diǎn)為P,Q,點(diǎn)G為PQ的中點(diǎn),O為坐標(biāo)原點(diǎn),求直線OG斜率的取值范圍.20.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.21.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問(wèn)題中,并完成解答.)22.(10分)已知圓的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù)),若直線與圓相切,求實(shí)數(shù)的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】由,解得,即或,函數(shù)有兩個(gè)零點(diǎn),,不正確,設(shè),則,由,解得或,由,解得:,即是函數(shù)的一個(gè)極大值點(diǎn),不成立,排除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導(dǎo)數(shù)的應(yīng)用以及數(shù)學(xué)化歸思想,屬于難題.這類(lèi)題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查知識(shí)點(diǎn)較多,但是并不是無(wú)路可循.解答這類(lèi)題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以及時(shí)函數(shù)圖象的變化趨勢(shì),利用排除法,將不合題意選項(xiàng)一一排除.2.B【解析】

設(shè)點(diǎn)位于第二象限,可求得點(diǎn)的坐標(biāo),再由直線與直線垂直,轉(zhuǎn)化為兩直線斜率之積為可得出的值,進(jìn)而可求得雙曲線的離心率.【詳解】設(shè)點(diǎn)位于第二象限,由于軸,則點(diǎn)的橫坐標(biāo)為,縱坐標(biāo)為,即點(diǎn),由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.本題考查雙曲線離心率的計(jì)算,解答的關(guān)鍵就是得出、、的等量關(guān)系,考查計(jì)算能力,屬于中等題.3.B【解析】

分兩類(lèi):一類(lèi)是醫(yī)院A只分配1人,另一類(lèi)是醫(yī)院A分配2人,分別計(jì)算出兩類(lèi)的分配種數(shù),再由加法原理即可得到答案.【詳解】根據(jù)醫(yī)院A的情況分兩類(lèi):第一類(lèi):若醫(yī)院A只分配1人,則乙必在醫(yī)院B,當(dāng)醫(yī)院B只有1人,則共有種不同分配方案,當(dāng)醫(yī)院B有2人,則共有種不同分配方案,所以當(dāng)醫(yī)院A只分配1人時(shí),共有種不同分配方案;第二類(lèi):若醫(yī)院A分配2人,當(dāng)乙在醫(yī)院A時(shí),共有種不同分配方案,當(dāng)乙不在A醫(yī)院,在B醫(yī)院時(shí),共有種不同分配方案,所以當(dāng)醫(yī)院A分配2人時(shí),共有種不同分配方案;共有20種不同分配方案.故選:B本題考查排列與組合的綜合應(yīng)用,在做此類(lèi)題時(shí),要做到分類(lèi)不重不漏,考查學(xué)生分類(lèi)討論的思想,是一道中檔題.4.D【解析】

求出復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,該點(diǎn)位于第四象限.故選:D.本題考查復(fù)數(shù)對(duì)應(yīng)的點(diǎn)的位置的判斷,屬于基礎(chǔ)題.5.A【解析】

根據(jù)題意,畫(huà)出幾何位置圖形,由圖形的位置關(guān)系分別求得的值,即可比較各選項(xiàng).【詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個(gè)面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個(gè)面所在平面均相交,∴,∴結(jié)合四個(gè)選項(xiàng)可知,只有正確.故選:A.本題考查了空間幾何體中直線與平面位置關(guān)系的判斷與綜合應(yīng)用,對(duì)空間想象能力要求較高,屬于中檔題.6.C【解析】

先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.7.D【解析】選項(xiàng)A,否命題為“若,則”,故A不正確.選項(xiàng)B,逆命題為“若,則”,為假命題,故B不正確.選項(xiàng)C,由題意知對(duì),都有,故C不正確.選項(xiàng)D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.8.B【解析】

解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.本題考查了不等式的解法,考查了集合的關(guān)系.9.C【解析】

化簡(jiǎn)得到,得到答案.【詳解】,故,對(duì)應(yīng)點(diǎn)在第三象限.故選:.本題考查了復(fù)數(shù)的化簡(jiǎn)和對(duì)應(yīng)象限,意在考查學(xué)生的計(jì)算能力.10.B【解析】

因?yàn)?所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.11.D【解析】

根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類(lèi),利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿足;若,則,由,即,即,因?yàn)椋院瘮?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.12.D【解析】

根據(jù)全稱(chēng)命題的否定是特稱(chēng)命題,對(duì)命題進(jìn)行改寫(xiě)即可.【詳解】全稱(chēng)命題的否定是特稱(chēng)命題,所以命題“,”的否定是:,.故選D.本題考查全稱(chēng)命題的否定,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

,由余弦定理,得,得,,,所以,所以.點(diǎn)睛:本題考查平面向量的綜合應(yīng)用.本題中存在垂直關(guān)系,所以在線性表示的過(guò)程中充分利用垂直關(guān)系,得到,所以本題轉(zhuǎn)化為求長(zhǎng)度,利用余弦定理和面積公式求解即可.14.63【解析】

對(duì)進(jìn)行化簡(jiǎn),可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)15.【解析】

利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.16.(或?qū)懗?【解析】試題分析:設(shè),取中點(diǎn)則,因此,所以,因?yàn)樵趩握{(diào)遞增,最大值為所以單調(diào)增區(qū)間是,最大值為考點(diǎn):函數(shù)最值,函數(shù)單調(diào)區(qū)間三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)答案不唯一具體見(jiàn)解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對(duì)函數(shù)進(jìn)行求導(dǎo)后得,對(duì)分三種情況進(jìn)行一級(jí)討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.【詳解】解:(1)曲線在點(diǎn)處的切線方程為,即.令切線與曲線相切于點(diǎn),則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時(shí),恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個(gè)零點(diǎn);②當(dāng)時(shí),在R上沒(méi)有零點(diǎn);③當(dāng)時(shí),令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.ⅰ)若,則,在上沒(méi)有零點(diǎn);ⅱ)若,則有且僅有一個(gè)零點(diǎn);ⅲ)若,則.,令,則,∴當(dāng)時(shí),單調(diào)遞增,.∴又∵,∴在R上恰有兩個(gè)零點(diǎn),綜上所述,當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)或時(shí),函數(shù)恰有一個(gè)零點(diǎn);當(dāng)時(shí),恰有兩個(gè)零點(diǎn).本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點(diǎn)等知識(shí),求解切線有關(guān)問(wèn)題時(shí),一定要明確切點(diǎn)坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點(diǎn)個(gè)數(shù),此時(shí)如果用到零點(diǎn)存在定理,必需說(shuō)明在區(qū)間內(nèi)單調(diào)且找到兩個(gè)端點(diǎn)值的函數(shù)值相乘小于0,才算完整的解法.18.(Ⅰ);(Ⅱ)【解析】試題分析:(1)先由公式求出數(shù)列的通項(xiàng)公式;進(jìn)而列方程組求數(shù)列的首項(xiàng)與公差,得數(shù)列的通項(xiàng)公式;(2)由(1)可得,再利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.試題解析:(1)由題意知當(dāng)時(shí),,當(dāng)時(shí),,所以.設(shè)數(shù)列的公差為,由,即,可解得,所以.(2)由(1)知,又,得,,兩式作差,得所以.考點(diǎn)1、待定系數(shù)法求等差數(shù)列的通項(xiàng)公式;2、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和.【易錯(cuò)點(diǎn)晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項(xiàng)公式、利用“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和,屬于難題.“錯(cuò)位相減法”求數(shù)列的前項(xiàng)和是重點(diǎn)也是難點(diǎn),利用“錯(cuò)位相減法”求數(shù)列的和應(yīng)注意以下幾點(diǎn):①掌握運(yùn)用“錯(cuò)位相減法”求數(shù)列的和的條件(一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的積);②相減時(shí)注意最后一項(xiàng)的符號(hào);③求和時(shí)注意項(xiàng)數(shù)別出錯(cuò);④最后結(jié)果一定不能忘記等式兩邊同時(shí)除以.19.(1).(2)【解析】

(1)設(shè)A的坐標(biāo)為A(x0,y0),由題意可得圓心C的坐標(biāo),求出C到直線x=1的距離.由半個(gè)弦長(zhǎng),圓心到直線的距離及半徑構(gòu)成直角三角形可得p的值,進(jìn)而求出拋物線的方程;(2)將拋物線的方程與圓的方程聯(lián)立可得韋達(dá)定理,進(jìn)而求出中點(diǎn)G的坐標(biāo),再求出直線OG的斜率的表達(dá)式,換元可得斜率的取值范圍.【詳解】(1)設(shè)A(x0,y0)且y02=2px0,則圓心C(),圓C的直徑|AB|,圓心C到直線x=1的距離d=|1|=||,因?yàn)閨MN|=2,所以()2+d2=()2,即1,y02=2px0,整理可得(2p﹣4)x0=0,所以p=2,所以拋物線的方程為:y2=4x;(2)聯(lián)立拋物線與圓的方程整理可得x2﹣2(5﹣p)x+16=0,△>0,設(shè)P(x1,y1),Q(x2,y2),則x1+x2=2(5﹣p),x1x2=16,所以中點(diǎn)G的橫坐標(biāo)xG=5﹣p,yG(),所以kOG(0<P<1),令t=5﹣p(t∈(4,5)),則kOG(),解得0<kOG,所以直線OG斜率的取值范圍(0,).本題考查拋物線的性質(zhì)及直線與拋物線的綜合,換元方法的應(yīng)用,屬于中檔題.20.(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論