GPT+通信白皮書-英文_第1頁
GPT+通信白皮書-英文_第2頁
GPT+通信白皮書-英文_第3頁
GPT+通信白皮書-英文_第4頁
GPT+通信白皮書-英文_第5頁
已閱讀5頁,還剩91頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

ExecutiveSummary

Drivenbythejointeffortofkeytechnologiessuchasbigdataandcloud

computing,asizablenumberofthegenerativepre-trainedtransformer(GPT)large

models,representedbyChatGPT,haveemerged,showinghighlycreativecontent

generationcapabilitiesandprovidinghighlyintelligenthuman-computerinteraction

experience.Foralongtime,therehavebeenmanytechnicalproblemsin

communicationthataredifficulttomodelaccuratelyorsolveefficientlyusing

traditionalmethods.Meanwhile,GPTdemonstratesthepotentialtoimprovethe

performanceofinformationcommunicationservicesandintelligentautonomous

networks.Inaddition,therapiddevelopmentandbroadapplicationsofGPTalsoneed

tobesupportedbyacommunicationnetworkwithlargebandwidth,lowlatency,and

highreliability.

Therefore,fromtheperspectiveofcommunicationpractitioners,thiswhitepaper

explorestheinterrelationshipbetweenGPTandcommunication.Firstly,Chapter1

sketchestheconcept,developmentprocess,andresearchstatusofGPTlargemodels.

Secondly,Chapter2discussesthenewapplicationsofGPTinthecommunication

industry,andthepositionofGPTinnetworkintelligentautonomy.Thirdly,Chapter3

exploreshowthecommunicationnetworksenablethebroadapplicationsofGPT,and

givesatypicalideaoffuturenetworkdesign.Moreover,Chapter4analyzesthe

processofGPTandcommunicationfromindependentevolutiontocollaborative

development,aswellasapplicationsof“6G+GPT”empoweringthedigital

transformationofindustries.Inaddition,Chapter5pointsoutthefivemostobvious

problemsandchallengesintheintegrationprocessof“GPT+Communication”and

providessomesolutions.Subsequently,Chapter6putsforwardseveralsuggestionson

howGPTandthecommunicationindustrycandeveloptogether,aswellasthe

prospectsforthefuture.Finally,Chapter7concludesthiswhitepaper.

1/92

0Preface

Inrecentyears,asArtificialIntelligence(AI)technologyhascontinuedto

advance,particularlyintheareasofreinforcementlearning,largemodels,and

generativecontent,variousindustrieshavebeenactivelyexploringitsapplications.At

theendofNovember2022,OpenAIreleasedtherapidlypopularizedchatbot

ChatGPT,whichpossessesastonishingnaturallanguageunderstandingandgeneration

capabilities,attractingwidespreadattentionfromsociety.Subsequently,inMarch

2023,thelaunchoftheupgradedversionGPT-4multimodallargemodelreignited

enthusiasmforgenerativeAI,leadingtotheemergenceofnumerouslargemodelsin

quicksuccession.

Sincetheinceptionoftext-basedconversationalinteractions,GPThas

profoundlyimpactedpeople’sproductionandliveswithinafewshortyears,bringing

aboutsignificantchanges.Manypeoplebelievethatitwillcontinuetobring

disruptivechanges.BillGatespointedoutthatlargemodelsrepresentthemost

revolutionarytechnologicaladvancementinover40years;NVIDIACEOJensen

Huanglikenedtheemergenceoflargemodelstothe“iPhonemoment”ofAI;Baidu

CEORobinLiproposedthatlargemodelsarepreparedtochangetheworldatthe

2023ZhongguancunForum.FromtheripplescausedbyChatGPTtotheglobalwave

itunleashed,GPTlargemodelshavebecomeoneofthemostdiscussedtopicstoday,

signalingacrucialturningpointinthedevelopmentofgenerativeAI;theyear2023

willalsoundoubtedlyleaveasignificantmarkinthehistoryofAIdevelopment.

Asanindustryfacilitatinginformationexchangeandtransmissionamong

humans,nature,andmachines,thecommunicationindustryiscloselyintertwined

withthedevelopmentoflargemodeltechnology.Thecommunicationindustryitself

hasahighdegreeofdigitalizationandneedstohandlecomplexdata.Theintroduction

ofGPTcanstreamlineasignificantamountofwork,bringingaboutsignificant

capacityenhancementsforcommunicationoperators,particularlyintherealmsof

networkoperationsandmaintenance(O&M)andservicedelivery,makingthemmore

intelligent.Intheeraoflargemodels,withtheadvancementofGPTtechnology,the

demandforcomputingpower,data,andalgorithmswillexperienceexplosivegrowth,

requiringcommunicationinfrastructuretoprovidesupport.Inthefuture,howGPT

empowersthecommunicationindustryandhowthecommunicationindustrysupports

4/92

GPTarequestionsthateverycommunicationprofessionalshouldearnestly

contemplate.

Therefore,thiswhitepaperisbasedonthedevelopmenthistoryandlatest

researchadvancementsofGPTlargemodels.Ontheonehand,itelaboratesonthe

innovativeapplicationsofGPTwithinthecommunicationindustryinspecific

scenarios.Ontheotherhand,itinvestigateshowfuturecommunicationnetworks

providenativesupportforGPTintermsofarchitectureandkeytechnologies.

Subsequently,combiningGPTwithcommunication,itproposesaroadmapforthe

digitalandintelligenttransformationofkeyindustriesthroughtheircollaborative

development,whilealsopointingouttheproblemsandchallengesintheintegration

anddevelopmentprocess.Inresponsetotheseissues,correspondingdevelopment

recommendationsandprospectsareprovided.Finally,thewholecontentofthiswhite

paperissummarized.Thecompletechapterstructureofthiswhitepaperisillustrated

inFigure0-1below.

5/92

Figure0-1WhitePaperChapterStructureDiagram

ThiswhitepaperwasjointlyorganizedandauthoredbytheBeijingInstituteof

Technology,withparticipationfrom18entities,includingthethreemajortelecom

operators(ChinaMobile,ChinaUnicom,andChinaTelecom),seventop-tier

universities,threerenownedenterprises,andfiveleadingresearchinstitutesinthe

industry.Spanningovereightmonths,theprocessinvolvedthein-depthparticipation

ofover50expertsandscholars,fromconductingresearchandtrackingthecutting-

edgestatusofGPTlargemodelstoexploringtherelationshipbetweenGPTand

communication,conceptualizingtheoutlineofthewhitepaper,arrangingspecific

chaptercontent,andassigningwritingtasks.Itunderwentmorethantwentyroundsof

discussionsandrevisionsbeforereachingitscompletion.Duringthisperiod,some

participatingentitiesalsosuccessfullycollaboratedtoapplyforaninternational

6/92

cooperationprojectfromtheMinistryofScienceandTechnologyofthePeople’s

RepublicofChina,titled“ResearchonKeyTechnologiesofIntegrated

MultidimensionalIntelligentOrchestrationinCloudComputingNetworksBasedon

LargeModels,”therebybettersupportingthecompletionofthiswhitepaper.

WebelievethatAItechnologyisstillinarapidlydevelopingstage,andthe

integrationandmutualsupportbetweenGPTlargemodelsandcommunication

networkscancontinuallyexpandinnovativeapplicationscenariosandimprove

ecosystemdevelopment,thusjointlypromotingtechnologicalprogressandthe

developmentofvariousindustries.

7/92

1.GPTLeadstheTideofArtificialIntelligenceDevelopment

WiththeadvancementofAIanddeeplearningtechnologies,theconceptof

“l(fā)argemodels”hascomeintofocus,withChatGPTbeingthemostnotable.On

November30,2022,OpenAIofficiallyreleasedtheAIchatbotChatGPT,which

representsArtificialIntelligenceGeneratedContent(AIGC)inthefieldofnatural

language.Itspowerfulcapabilitieshavechangedthewaymanypeopleworkandlive,

sparkinganewwaveofAIgloballyandattractingwideattentionfrombothindustry

andacademia.OnMarch14,2023,theofficiallyreleasedGPT-4underwentfurther

upgrades,significantlyrelaxingtextinputrestrictions,improvingansweraccuracy,

andevenenablingdirectinputofimagestogeneratelyrics,creativetexts,etc.,with

stylevariations,onceagainshowcasingtheimpactofgenerativeAI.OnNovember7,

2023,atthefirst-everOpenAIDevDay,OpenAICEOAltmanshowcasedGPT-4

Turbototheworld.AsthelatestversionofGPT,ithasbeenupdatedinareassuchas

dataquality,imageprocessing,andspeechconversion,bringingdevelopersandusers

morepossibilitiesandopportunities.

So,whatareChatGPTandGPT?Whatdevelopmentjourneyhavethey

undergone?Andhowshouldtheybeunderstoodandapplied?Thischapterwillstart

withanexplorationofGPTlargemodels,introducingtheirbasicconcepts,

developmenthistory,andcurrentresearchstatustoprovidereaderswitha

comprehensiveandin-depthunderstandingofGPT.

1.1.BasicConceptsofGPT

1.1.1GenerativePre-trainedTransformer

GPTstandsforGenerativePre-trainedTransformer,originatingfromthefields

ofdeeplearningandnaturallanguageprocessing(NLP).Overthepastfewyears,

withtheadvancementofcomputingpowerandtheemergenceofbigdata,significant

breakthroughshavebeenmadeinthefieldofNLP.GPT,asanintegrationofaseries

ofNLPtechnologies,emergedinsuchacontext,asshowninFigure1-1.

G:Generative.ThisindicatesthatGPThastheabilitytospontaneouslygenerate

content.

P:Pre-trained.ThisindicatesthatGPThasundergonepre-trainingandisready

forimmediateuse.

8/92

T:Transformer.ThisindicatesthatGPTisbasedontheTransformerarchitecture

forlanguagemodeling.

Figure1-1MeaningofGPT

In2017,theGoogleteamfirstproposedtheTransformermodelbasedonthe

Self-AttentionMechanism(SAM)andappliedittoNLP[1].OpenAIappliedthis

technologyandreleasedtheearliestgenerationoflargemodels,GPT-1,in2018.Since

then,theparametersizeofeachgenerationofGPTmodelshasgrownexplosively.

TheparametersizeofGPT-2,releasedinFebruary2019,was1.5billion,whileGPT-3,

releasedinMay2020,directlyreached175billion.

ThemeteoricriseofChatGPTwasnotbychance.Itistheresultoftheeffortsof

manypeopleandalongperiodofevolution.TounderstandthedevelopmentofGPT,

oneshouldfirstgrasptheconceptoflargemodelsandTransformerarchitecture.

1.1.2LargeModel

Generally,beforeChatGPT,theAImodelsthatreceivedpublicattentionwere

mainlyusedforsingletasks.Forexample,“AlphaGo”,whichignitedtheentireAI

marketandprompteditsexplosivedevelopment,defeatedGoworldchampionLee

Sedolinthe“Manvs.Machine”matchin2016,basedonglobalGogamerecords.

However,fundamentally,theseAIdatamodels,whichfocusonspecifictasks,can

onlybecalled“smallmodels”comparedtoChatGPT.

Largemodelsrefertomachinelearningmodelswithhugeparameterscalesand

complexity.ThetermusuallyreferstoLargeLanguageModels(LLMs).Alanguage

modelisanAImodelthat,aftertraining,canunderstandandgeneratehuman

language,and“l(fā)arge”meansthatthemodel’sparametersareverylargerelativeto

“smallmodels.”

AsshowninFigure1-2,thisevolutionarytreetracesthedevelopmenthistoryof

9/92

largemodelsinrecentyears,highlightingsomeofthemostwell-knownmodels,with

modelsonthesamebranchbeingmorecloselyrelated[2].Solidsquaresrepresent

open-sourcemodels,whilehollowsquaresrepresentclosed-sourcemodels.Non-

Transformermodelsareshowningray,andamongTransformer-basedmodels,

Encodermodelsareinthepinkbranch,Decodermodelsareinthebluebranch,and

Encoder-Decodermodelsareinthegreenbranch.

Figure1-2EvolutionaryTreeofLargeModels

Basedonthisevolutionarytreediagram,wecanconcludethatDecoder-only

modelsaregraduallybecomingthedominantmodelsinLLMdevelopment,and

OpenAIcontinuestomaintainitsleadingpositioninLLM.Metahasmade

outstandingcontributionstoopen-sourceandLLMresearch,butthereisatrend

towardsclosed-sourcedevelopmentafterthelaunchofGPT-3.Inaddition,many

companiesandinstitutionsarestillactivelyexploringEncoder-Decodermodels,such

asGoogle.

Currently,majorinstitutionsabroadthatreleaselargemodelsincludeOpenAI,

Anthropic,Google,andMeta,withmodelparameterscalesmainlyinthetensand

hundredsofbillions.Uptonow,thetopGPTlargemodelsabroadincludeChatGPT,

Claude,Bard,andLlama.Amongthem,afterGooglereleasedthelatestnative

10/92

multimodallargemodel–Gemini,BardwasofficiallyrenamedGemini.

Inthisgloballycompetitivearena,Chinaisalsokeepingpace,developingmany

largemodels,includingTencent’s“Hybrid,”Alibaba’s“TongyiQianwen,”Huawei’s

“Pangu,”andChinaMobile’s“Jiutian”series.DatashowsthatasofOctober2023,

thereareatotalof254domesticcompanies,universities,andresearchinstituteswith

largemodelsofover1billionparameters,indicatingthatthe“battleofthehundred

models”istransitioningfromthepreviousstageof“beingborn”toanewstageof

“beingused.”Figure1-3showssomeofthelargemodelsdevelopedbydomesticand

foreigncompaniescurrently.

Figure1-3VariousTypesofLargeModels

1.1.3TransformerArchitecture

TheTransformerarchitectureisacrucialfoundationofGPT,whichisaneural

networkarchitecturebasedontheSAMandwidelyusedinlargemodelsinthefield

ofNLP.ItscorecomponentsaretheEncoderandDecoder.TheEncoderencodes

inputtextintoaseriesofvectors,whiletheDecoderdecodesthesevectorsonebyone

intooutputtext.BeforetheintroductionofTransformer,themainstreammodelsinthe

NLPfieldwereRecurrentNeuralNetworks(RNNs),whichusedrecursionand

convolutionalneuralnetworksforlanguagesequencetransformation.

InJune2017,theGoogleBrainteampublishedapapertitledAttentionisAllYou

NeedatthetopAIconferenceNeurIPS,proposinganewnetworkarchitecturecalled

Transformer.ItisentirelybasedontheSAM,abandoningrecursionandconvolution.

Afteronly12hoursoftrainingoneightP100GraphicsProcessingUnits(GPUs),

Transformerachievedhighertranslationquality[1],showcasingexcellentparallelism

11/92

andbecomingthemostadvancedLLMatthetime.

Figure1-4illustratesthenetworkstructureoftheTransformer.Itconsistsofa

seriesofEncodersandDecoders,eachcomprisingmulti-headattentionlayersandall-

inclusiveconnectedfeedforwardnetworks.GPT,similartotheDecoderpartof

Transformer,isanautoregressivemodel.

Figure1-4TransformerNetworkStructureDiagram

ThecorecomponentintheTransformeristhemulti-headattentionmechanism

module,asshowninFigure1-5.Itrequiresthreespecifiedinputs:Q(Query),K(Key),

andV(Value).Then,itcalculatesthesimilaritybetweeneachpairofQandKand

weightseachVbasedonthesimilaritytoobtaintheattentioncalculationresult.

12/92

Figure1-5Multi-HeadAttentionMechanismModule

Themulti-headattentionmechanismdoesnotcalculateattentiononlyoncebut

dividestheinputintosmallerblocksandthencalculatesthescaleddot-product

attentioninparalleloneachsubspace.Thisdesignallowseachattentionmechanism

tooptimizedifferentfeaturepartsofeachword,balancingthebiasesthatmayarise

fromthesameattentionmechanismandenablingthemodeltocapturesemantic

informationatdifferentlevels,therebyenhancingthemodel’sexpressivepowerand

improvingitseffectiveness.

1.2.DevelopmentHistoryofGPT

13/92

Figure1-6DevelopmentHistoryofGPT

ThedevelopmenthistoryofGPTcanbedividedintotwostages.Before

ChatGPT,theemphasiswasoncontinuouslyincreasingthebasicscaleoflarge

modelsandenhancingnewcapabilities.ChatGPTandGPT-4,ontheotherhand,

focusmoreonreinforcementlearningfromhumanfeedbacktounderstandhuman

intentandprovidebetterservices,asshowninFigure1-6.

①June2018:OpenAIpublishedthepaperImprovingLanguageUnderstanding

byGenerativePre-trainingandofficiallyreleasedGPT-1[3].

Basicapproach:Generativepre-training(unsupervised)+downstreamtask

fine-tuning(supervised).

BasedonaunidirectionalTransformerlanguagemodelwithadecoder

structure,consistingof12layers.

117millionparameters,5GBtrainingdata,relativelylimitedmodelsizeand

capabilities.

Contextwindow:512tokens.

②February2019:OpenAIpublishedthepaperLanguageModelsare

UnsupervisedMultitaskLearners,proposingthatlanguagemodelsareunsupervised

multitasklearners,andGPT-2wasborn[4].

Basicapproach:Removingsupervision,retainingonlyunsupervisedlearning.

48-layerTransformerstructure.

14/92

1.5billionparameters,andthetrainingdatavolumeincreasedto40GB.

Contextwindow:1024tokens.

③May2020:OpenAIpublishedthepaperLanguageModelsareFew-Shot

LearnersandintroducedtheGPT-3model[5].

Basicapproach:Unsupervisedlearning+in-contextlearning.

96-layermulti-headTransformer.

Thenumberofparametersincreasedto175billion,trainedon45TBoftext

data.

Contextwindow:2048tokens.

④March2022:OpenAIonceagainpublishedthepaperTrainingLanguage

ModelstoFollowInstructionswithHumanFeedback,introducingReinforcement

LearningfromHumanFeedback(RLHF),andlaunchedtheInstructGPTmodel[6].

Basicapproach:RLHF+fine-tuningtraining.

Enhancedhumanadjustmentofmodeloutput.

Resultsrankedinamoreunderstandablemanner.

ChatGPTisaderivativeofInstructGPT,andthetwohavethesamemodel

structureandtrainingmethod.Theonlydifferenceisthewaytheycollectdata.

ChatGPTfocusesmoreoninteractionintheformofdialogue.

⑤March2023:OpenAIreleasedthemultimodalpre-trainedlargemodelGPT-4,

onceagainundergoingsignificantupgrades.

Basicapproach:Multimodal.

Contextwindow:8195tokens.

1.8trillionparameters,13trilliontokentrainingdata.

Powerfulimagerecognitioncapabilities.

AlthoughthecurrentcapabilitiesofGPT-4inreal-worldscenariosmaynot

matchthoseofhumans,ithasdemonstratedsignificantlysuperiorabilitiesinvarious

professionalandacademicexams.EvenSATscores(whichcanbeunderstoodas

scoresfortheU.S.collegeadmissionstest)ofGPT-4havesurpassedthoseof90%of

testtakers,reachingthelevelrequiredforadmissiontotopuniversitiessuchas

HarvardandStanford.

1.3.CurrentResearchStatusofGPT

OnOctober12,2023,theanalysiscompanystateof.aireleasedtheStateofAI

Report2023.ThereportpointedoutthatOpenAI’sGPT-4remainsthemostpowerful

15/92

LLMglobally.GenerativeAIhaspropelledadvancementsinlifesciencesandhas

beenasaviorfortheventurecapitalindustry[7].Largemodelscontinuetoachieve

technologicalbreakthroughs,especiallyinthefieldoflifesciences,making

significantprogressinmolecularbiologyanddrugdiscovery.

OnDecember14,2023,Natureannouncedtenpeoplein2023.Notably,the

chatbotChatGPT,duetoitsdominanceofvariousnewsheadlinesin2023and

profoundimpactonthescientificcommunityandsocietyatlarge,wasincludedasthe

11th“non-humanmember”onthelist,recognizingthesignificantchangesbrought

aboutbygenerativeAItoscientificdevelopmentandprogress.Currently,both

domesticallyandabroad,researchonGPTlargemodelscontinuestodeepen,with

manyinstitutionsstartingtodeveloptheirownlargemodels,andtheapplication

scenariosarebecomingincreasinglydiverse.LargemodelsrepresentedbyChatGPT

haveofficiallyusheredintheeraofAI2.0.

1.3.1ForeinResearchStatus

1UnitedStates

IntheUnitedStates,startupslikeOpenAIandAnthropic,alongwithtechgiants

suchasMicrosoftandGoogle,areleadingtherapiddevelopmentoflargemodels.

Majorcompaniesarecontinuallyenhancingtheircompetitiveness.Googleinvested

$300millioninAnthropictocounterthethreatposedbyChatGPT,joining

reinforcementlearningfromartificialintelligencefeedback(RLAIF)toreducehuman

feedback.InDecember2022,GooglepublishedapapertitledConstitutionalAI:

HarmlessnessfromAIFeedback,introducingtheAImodelClaude.Buzzfeed,aUS

newmediagiant,sawitsstockpricetripleintwodaysafterannouncingplanstouse

ChatGPTtoassistcontentcreation.Microsoft,asthemaininvestorinOpenAI,isalso

usingChatGPTtoenhanceitsproductcompetitivenessandsupplementits

professionalknowledgeandmathematicalshortcomings.

2UnitedKingdom

InApril2023,theUKgovernmentannouncedthatitwouldprovide£100million

ininitialfundingtotheteamresponsibleforbuildingtheUKversionofthe

foundationalAImodeltoacceleratethedevelopmentofAItechnologyintheUK.The

UKgovernmentstatedthatthisinvestmentwouldbeusedtofundnewteamsjointly

builtbythegovernmentandtheindustrytoensuretheUK’sAI“sovereign

capabilities.”Thegoalofthisinitiativeistopromotetheapplicationofsafeand

16/92

reliablefoundationalmodelsandstrivetobuildtheUKintoatechnological

“superpower”by2030.Inaddition,inresponsetothecontroversyovertheapplication

oflargemodelssuchasGPTinAIethics,theUKhasalsoissuedawhitepaperon

regulatorymeasuresandstatedthatregulatoryagencieswillnextissueguidelinesand

riskassessmenttemplatestovariousorganizations.Othertoolsandresourceswillbe

usedtoformulatespecificimplementationprincipleswithintheindustry.

③Europe

InFinland,FlowriteisanAI-basedwritingtoolthatcangenerateemails,

messages,andothercontentbyinputtingkeywords.IntheNetherlands,the

omnichannelcommunicationplatformMessageBirdlauncheditsownAIplatform

MessageBirdAI,whichcanunderstandthemeaningofcustomerinformationand

respondaccordingly.BotharebasedonGPT-3.Germanyisalsoconstantlycatching

upinthedevelopmentoflargemodels.Forexample,onMarch7,2023,Google

launchedthemultimodallargemodelPaLM-E,jointlydevelopedbytheTechnical

UniversityofBerlinandGoogle.

InFebruary2024,theEuropeangenerativeAIunicornMistralAIunveiledits

latestLLM,MistralLarge.Withacontextwindowof32Ktokens,thismodelsupports

English,French,Spanish,German,andItalian.Astheflagshipmodelnewlylaunched,

MistralLargedemonstratedoutstandingperformanceincommon-sensereasoningand

knowledgequizzes,scoringhigheroverallthanGeminiProandClaude2,secondonly

toGPT-4.

④SouthKorea

SouthKoreaisalsoamongtheearliestcountriestoengageinlargemodel

development.Currently,notablerepresentativesinthisfieldfromSouthKoreainclude

NAVER,Kakao,KT,SKT,andLG.SouthKorea’saccumulationofexpertisein

semiconductorchipspositionsitadvantageouslyintherealmoflargemodels.

Presently,SouthKoreansemiconductorcompaniesareactivelyformingalliancesto

tacklethecomputationalchallengesposedbylargemodeldevelopment.Bytheendof

2022,NAVERinitiatedcollaborationwithSamsungElectronicstodevelopnext-

generationAIchipsolutions,optimizingthembasedonNAVER’slargemodel,

HyperCLOVA.Moreover,SouthKoreahasmadeconsiderableexplorationsinthe

verticalapplicationsoflargemodels,suchasKoGPTinhealthcareandExaonein

biopharmaceuticalsandintelligentmanufacturing.

17/92

⑤Japan

Japan,asacountrywithalesscommonlanguage,facesthechallengeof

insufficientlinguisticdata.TheearliestpubliclylaunchedNLPlargemodelinJapan

wasNTELLILINKBackOffice,introducedin2020,capableofdocument

classification,knowledgereadingcomprehension,andautomaticsummarization,

amongotherfunctions.ItisanapplicationdevelopedbasedonGoogleBERT.

ThemoreJapanese-bloodedgenerativeAIsareactuallyHyperCLOVA,Rinna

andELYZAPencil,butHyperCLOVAandRinnaalsohaveforeigngenes.

HyperCLOVA,initiallylaunchedbytheSouthKoreansearchgiantNAVERin2021,

standsoutasthefirstLLMspecificallytailoredfortheJapanese.Itachievedfirst

placeinalltracksatthedialoguesystemlivecompetitionheldin2021.ELYZAPencil,

ontheotherhand,isanLLMintroducedbyanAIstartupaffiliatedwiththeMatsuo

LaboratoryattheUniversityofTokyo,markingJapan’sfirstgenuinepublicreleaseof

agenerativeAIproduct.

1.3.2DomesticResearchStatus

ManymightbelievethatChina’sjourneywithlargemodelsbeganwiththe

“ERNIEBot,”butinreality,it’smerelyaconversationaltoolpoweredbylarge

models.Largemodelswerealreadyintroduceddomesticallyasearlyas2019.Inthat

year,largemodelswereextensivelyappliedindrugdevelopment,promptingmajor

technologycompaniestoinitiatetheirownlargemodelprojects.InMarch2021,the

BeijingAcademyofArtificialIntelligenceunveiledChina’sfirstultra-large-scale

intelligentmodelsystem,“Wudao1.0.”Subsequently,inAprilofthesameyear,

AlibabaGrouplaunchedPLUG,thelargestpre-trainedlanguagemodelintheChinese

community,whichwaswidelyreferredtoasthe“ChineseversionofGPT-3”atthe

time.

Inrecentyears,significantprogresshasbeenmadedomesticallyinthefieldof

largemodels.Fromresearchinstitutionstoenterprises,therehasbeenasubstantial

increaseininvestmentinlargemodels,leadingtosignificantbreakthroughsin

algorithms,computingpower,data,andotherareas.Chinahasproducedabatchof

internationallycompetitivelargemodels,widelyappliedacrossvariousfields.

OnMarch16,2023,basedontheERNIElargemodel,Baidureleased“ERNIE

Bot,”China’sfirstChatGPT-likeproduct.OnMay6,2023,iFLYTEKlaunchedthe

ChineseversionofChatGPT,“SparkCognitiveLargeModel,”capableoftext

18/92

generation,languageunderstanding,knowledgequestionanswering,logicalreasoning,

mathematicalabilities,codingskills,andmultimodalcapabilities.

1.3.3InternationalOrganizations

Today,internationalorganizationssuchastheInternationalOrganizationfor

Standardization(ISO)andtheInternationalElectrotechnicalCommission(IEC)have

allcarriedoutstandardresearchonkeyterminologies.InMarch2023,theEuropean

TelecommunicationStandardsInstitute(ETSI)alsointroduced

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論