




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆朔州市重點中學(xué)高三兩校下學(xué)期聯(lián)考數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數(shù)列中,,則與的等比中項是()A.±4 B.4 C. D.2.已知的值域為,當(dāng)正數(shù)a,b滿足時,則的最小值為()A. B.5 C. D.93.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時,介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個全等的直角三角形再加上中間的一個小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個全等的三角形與中間的一個小正六邊形組成的一個大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點,則此點取自小正六邊形的概率為()A. B.C. D.4.已知命題,,則是()A., B.,.C., D.,.5.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件6.已知復(fù)數(shù)為虛數(shù)單位),則z的虛部為()A.2 B. C.4 D.7.已知函數(shù),關(guān)于x的方程f(x)=a存在四個不同實數(shù)根,則實數(shù)a的取值范圍是()A.(0,1)∪(1,e) B.C. D.(0,1)8.函數(shù)的大致圖象為A. B.C. D.9.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.10.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,11.已知實數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.12.已知,若,則等于()A.3 B.4 C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則______.14.(5分)已知曲線的方程為,其圖象經(jīng)過點,則曲線在點處的切線方程是____________.15.已知拋物線的焦點為,過點且斜率為1的直線交拋物線于兩點,,若線段的垂直平分線與軸交點的橫坐標(biāo)為,則的值為_________.16.“”是“”的__________條件.(填寫“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某地在每周六的晚上8點到10點半舉行燈光展,燈光展涉及到10000盞燈,每盞燈在某一時刻亮燈的概率均為,并且是否亮燈彼此相互獨立.現(xiàn)統(tǒng)計了其中100盞燈在一場燈光展中亮燈的時長(單位:),得到下面的頻數(shù)表:亮燈時長/頻數(shù)1020402010以樣本中100盞燈的平均亮燈時長作為一盞燈的亮燈時長.(1)試估計的值;(2)設(shè)表示這10000盞燈在某一時刻亮燈的數(shù)目.①求的數(shù)學(xué)期望和方差;②若隨機(jī)變量滿足,則認(rèn)為.假設(shè)當(dāng)時,燈光展處于最佳燈光亮度.試由此估計,在一場燈光展中,處于最佳燈光亮度的時長(結(jié)果保留為整數(shù)).附:①某盞燈在某一時刻亮燈的概率等于亮燈時長與燈光展總時長的商;②若,則,,.18.(12分)已知等差數(shù)列的前n項和為,,公差,、、成等比數(shù)列,數(shù)列滿足.(1)求數(shù)列,的通項公式;(2)已知,求數(shù)列的前n項和.19.(12分)第十三屆全國人大常委會第十一次會議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對某試點社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識強(qiáng)分類意識弱合計試點后試點前合計已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為.(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點前分類意識強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點前分類意識強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考20.(12分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.21.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.22.(10分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
利用等比數(shù)列的性質(zhì)可得,即可得出.【詳解】設(shè)與的等比中項是.
由等比數(shù)列的性質(zhì)可得,.
∴與的等比中項
故選A.【點睛】本題考查了等比中項的求法,屬于基礎(chǔ)題.2.A【解析】
利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【詳解】解:∵的值域為,∴,∴,∴,當(dāng)且僅當(dāng)時取等號,∴的最小值為.故選:A.【點睛】本題主要考查了對數(shù)復(fù)合函數(shù)的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.3.D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點取自小正六邊形的概率.故選:D.【點睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.4.B【解析】
根據(jù)全稱命題的否定為特稱命題,得到結(jié)果.【詳解】根據(jù)全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎(chǔ)題.5.B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題6.A【解析】
對復(fù)數(shù)進(jìn)行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復(fù)數(shù)的四則運算及虛部的概念,計算過程要注意.7.D【解析】
原問題轉(zhuǎn)化為有四個不同的實根,換元處理令t,對g(t)進(jìn)行零點個數(shù)討論.【詳解】由題意,a>2,令t,則f(x)=a????.記g(t).當(dāng)t<2時,g(t)=2ln(﹣t)(t)單調(diào)遞減,且g(﹣2)=2,又g(2)=2,∴只需g(t)=2在(2,+∞)上有兩個不等于2的不等根.則?,記h(t)(t>2且t≠2),則h′(t).令φ(t),則φ′(t)2.∵φ(2)=2,∴φ(t)在(2,2)大于2,在(2,+∞)上小于2.∴h′(t)在(2,2)上大于2,在(2,+∞)上小于2,則h(t)在(2,2)上單調(diào)遞增,在(2,+∞)上單調(diào)遞減.由,可得,即a<2.∴實數(shù)a的取值范圍是(2,2).故選:D.【點睛】此題考查方程的根與函數(shù)零點問題,關(guān)鍵在于等價轉(zhuǎn)化,將問題轉(zhuǎn)化為通過導(dǎo)函數(shù)討論函數(shù)單調(diào)性解決問題.8.A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.9.C【解析】
求得點坐標(biāo),由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標(biāo),進(jìn)而求得【詳解】拋物線焦點為,令,,解得,不妨設(shè),則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎(chǔ)題.10.D【解析】
根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,
設(shè),則,的幾何意義為直線在軸上的截距的2倍,
由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;
設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標(biāo)函數(shù)幾何意義的認(rèn)識,屬于基礎(chǔ)題.11.B【解析】
作出不等式組對應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動點到定點的斜率,當(dāng)位于時,此時的斜率最小,此時.故選B.【點睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.12.C【解析】
先求出,再由,利用向量數(shù)量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關(guān)向量的問題,涉及到的知識點有向量的減法坐標(biāo)運算公式,向量垂直的坐標(biāo)表示,屬于基礎(chǔ)題目.二、填空題:本題共4小題,每小題5分,共20分。13.121【解析】
在所給的等式中令,,令,可得2個等式,再根據(jù)所得的2個等式即可解得所求.【詳解】令,得,令,得,兩式相加,得,所以.故答案為:.【點睛】本題主要考查二項式定理的應(yīng)用,考查學(xué)生分析問題的能力,屬于基礎(chǔ)題,難度較易.14.【解析】
依題意,將點的坐標(biāo)代入曲線的方程中,解得.由,得,則曲線在點處切線的斜率,所以在點處的切線方程是,即.15.1【解析】
設(shè),寫出直線方程代入拋物線方程后應(yīng)用韋達(dá)定理求得,由拋物線定義得焦點弦長,求得,再寫出的垂直平分線方程,得,從而可得結(jié)論.【詳解】拋物線的焦點坐標(biāo)為,直線的方程為,據(jù)得.設(shè),則.線段垂直平分線方程為,令,則,所以,所以.故答案為:1.【點睛】本題考查拋物線的焦點弦問題,根據(jù)拋物線的定義表示出焦點弦長是解題關(guān)鍵.16.充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判斷命題的關(guān)系.【詳解】由,所以或,所以“”是“”的充分不必要條件.故答案為:充分不必要【點睛】本題考查命題的充分條件與必要條件的判斷,考查余弦的二倍角公式的應(yīng)用.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)①,,②72【解析】
(1)將每組數(shù)據(jù)的組中值乘以對應(yīng)的頻率,然后再將結(jié)果相加即可得到亮燈時長的平均數(shù),將此平均數(shù)除以(個小時),即可得到的估計值;(2)①利用二項分布的均值與方差的計算公式進(jìn)行求解;②先根據(jù)條件計算出的取值范圍,然后根據(jù)并結(jié)合正態(tài)分布概率的對稱性,求解出在滿足取值范圍下對應(yīng)的概率.【詳解】(1)平均時間為(分鐘)∴(2)①∵,∴,②∵,,∴∵,,∴∴即最佳時間長度為72分鐘.【點睛】本題考查根據(jù)頻數(shù)分布表求解平均數(shù)、幾何概型(長度模型)、二項分布的均值與方差、正態(tài)分布的概率計算,屬于綜合性問題,難度一般.(1)如果,則;(2)計算正態(tài)分布中的概率,一定要活用正態(tài)分布圖象的對稱性對應(yīng)概率的對稱性.18.(1),();(2).【解析】
(1)根據(jù)是等差數(shù)列,,、、成等比數(shù)列,列兩個方程即可求出,從而求得,代入化簡即可求得;(2)化簡后求和為裂項相消求和,分組求和即可,注意討論公比是否為1.【詳解】(1)由題意知,,,由得,解得.又,得,解得或(舍).,.又(),().(2),①當(dāng)時,.②當(dāng)時,.【點睛】此題等差數(shù)列的通項公式的求解,裂項相消求和等知識點,考查了化歸和轉(zhuǎn)化思想,屬于一般性題目.19.(1)有的把握認(rèn)為居民分類意識強(qiáng)與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】
(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識強(qiáng)的概率為可得列聯(lián)表,然后計算后可得結(jié)論;(2)由已知的取值分別為,分別計算概率得分布列,由公式計算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識強(qiáng)的概率為,可得分類意識強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識強(qiáng)分類意識弱合計試點后試點前合計因為的觀測值,所以有的把握認(rèn)為居民分類意識強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點前分類意識強(qiáng)的戶居民中,選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,則0,1,2,3,故,,,,則的分布列為.【點睛】本題考查獨立性檢驗,考查隨機(jī)變量的概率分布列和數(shù)學(xué)期望.考查學(xué)生的數(shù)據(jù)處理能力和運算求解能力.20.(1);(2)見解析【解析】
(1)根據(jù)已知可得,結(jié)合離心率和關(guān)系,即可求出橢圓的標(biāo)準(zhǔn)方程;(2)斜率不為零,設(shè)的方程為,與橢圓方程聯(lián)立,消去,得到縱坐標(biāo)關(guān)系,求出方程,令求出坐標(biāo),要證、、三點共線,只需證,將分子用縱坐標(biāo)表示,即可證明結(jié)論.【詳解】(1)由于,將代入橢圓方程,得,由題意知,即.又,所以,.所以橢圓的方程為.(2)解法一:依題意直線斜率不為0,設(shè)的方程為,聯(lián)立方程,消去得,由題意,得恒成立,設(shè),,所以,直線的方程為.令,得.又因為,,則直線,的斜率分別為,,所以.上式中的分子,.所以,,三點共線.解法二:當(dāng)直線的斜率不存在時,由題意,得的方程為,代入橢圓的方程,得,,直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三升四數(shù)學(xué)學(xué)生心理健康輔導(dǎo)計劃
- 小學(xué)語文五年級上冊學(xué)習(xí)評價計劃
- 九年級化學(xué)學(xué)期課程安排計劃
- 泥畫加工合同
- 北京天下網(wǎng)訊公司商業(yè)計劃書修訂版
- 2023《防排煙系統(tǒng)維護(hù)保養(yǎng)綜合檢測記錄》
- 2025年國際交流秋季學(xué)習(xí)計劃
- 小學(xué)四年級美術(shù)教學(xué)資源利用計劃
- 幼兒園財務(wù)預(yù)算管理計劃
- 理綜教研組特色活動計劃
- (正式版)JBT 14449-2024 起重機(jī)械焊接工藝評定
- 新安法下怎樣做到「盡職免責(zé)」
- 2022年10月自考00830現(xiàn)代語言學(xué)試題及答案含解析
- 三年級下冊數(shù)學(xué)計算去括號練習(xí)400道及答案
- 2024年四川蓬安相如旅游開發(fā)有限責(zé)任公司招聘筆試參考題庫含答案解析
- 統(tǒng)編版語文四年級下冊第二單元 快樂讀書吧:十萬個為什么 整書閱讀 課件
- 保安員心理測試題及答案
- YY/T 0489-2023一次性使用無菌引流導(dǎo)管及輔助器械
- 中醫(yī)藥適宜技術(shù)頸椎病課件
- 幼小銜接視野下大班幼兒學(xué)習(xí)習(xí)慣的現(xiàn)狀調(diào)查及養(yǎng)成策略研究
- 中職電子商務(wù)班級建設(shè)方案
評論
0/150
提交評論