數(shù)形結合思想在小學數(shù)學中的運用_第1頁
數(shù)形結合思想在小學數(shù)學中的運用_第2頁
數(shù)形結合思想在小學數(shù)學中的運用_第3頁
數(shù)形結合思想在小學數(shù)學中的運用_第4頁
數(shù)形結合思想在小學數(shù)學中的運用_第5頁
已閱讀5頁,還剩75頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、數(shù)形結合思想 在小學數(shù)學教學中的運用,四川省德陽市第一小學 張洪明,(一)基本理念的修訂,(二)設計思路、具體內容和表達方式的修訂,數(shù)學的解釋、核心理念、雙基變四基、兩能變四能、教師與生都為主、過程與結果同為重,主要是四個領域的刪、減、增、移, 以及在其中貫徹增加核心概念(比如運算能力、幾何直觀、模型思想等),一、修訂稿與實驗稿的區(qū)別基本理念的修訂,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,實驗稿: 數(shù)學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,并進行廣泛應用的過程。 修改稿:(簡潔、明了) 數(shù)學是研究數(shù)量關系和空間形式的科學。,1、關于數(shù)學的解釋,2、關于核心理念中“面

2、向全體學生”,實驗稿: 人人學有價值的數(shù)學;人人都能獲得必需的數(shù)學;不同的人在數(shù)學上得到不同的發(fā)展。 修改稿: 人人都能獲得良好的數(shù)學教育,不同的人在數(shù)學上得到不同的發(fā)展。,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,實驗稿: 雙基:基礎知識、基本技能。 修改稿: 四基:基礎知識、基本技能、 基本思想、基本活動經(jīng)驗。,3、關于“雙基”教學變“四基”教學。,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,基本思想: 史寧中教授特別提到:抽象思想、推理思想、模型思想 核心思想:歸納和演繹(而演繹、化歸、轉化、類比都屬于推理思想) 常用的小學數(shù)學思想方法:對應思想方法、假設思想方法、比較思想方法、符號化思想方法

3、、類比思想方法、轉化思想方法、分類思想方法、集合思想方法、數(shù)形結合思想方法、統(tǒng)計思想方法、極限思想方法、代換思想方法、可逆思想方法、化歸思維方法、變中抓不變的思想方法、數(shù)學模型思想方法、整體思想方法等等。,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,基本活動經(jīng)驗:, ,一 種 方 法 是:1個5,2個5,3個5。 另一種方法是:1個3,2個3,3個3,4個3,5個 3。 這一系列數(shù)學思維活動,就為后邊學習53積累了相關的數(shù)學活動經(jīng)驗。,比如:讓學生很快數(shù)出有多少顆五星。,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,基本活動經(jīng)驗: 數(shù)學活動經(jīng)驗,不僅僅是解題經(jīng)驗,更多的是數(shù)學思維活動的經(jīng)驗,數(shù)學思考習慣

4、的經(jīng)驗。不斷積累!,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,實驗稿: 重點是分析問題和解決問題的能力 修改稿: 明確提出: 發(fā)現(xiàn)和提出問題能力 分析和解決問題能力,4、關于“兩能”到“四能”:,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,修訂稿中十大核心概念: 數(shù) 感、符號意識、運算能力、 模型思想、空間觀念、幾何直觀、推理能力、數(shù)據(jù)分析觀念、 應用意識、創(chuàng)新意識,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,幾何直觀 (數(shù)形結合),十大核心概念之一,一、修訂稿與實驗稿的區(qū)別基本理念的修訂,幾何直觀,修訂稿:幾何直觀利用圖形描述問題和分析問題。把復雜的數(shù)學問題變得簡明、形象,有助于探索解決問題的思路,預

5、測結果。,簡單地說:就是指依托圖形進行數(shù)學思考、想象。,二、幾何直觀(數(shù)形結合)的基本概念。,數(shù)形本是相倚依,焉能分作兩邊飛? 數(shù)缺形時少直觀,形少數(shù)時難入微, 數(shù)形結合百般好,隔離分家萬事休, 幾何代數(shù)統(tǒng)一體,永遠聯(lián)系莫分離。,華羅庚,二、幾何直觀(數(shù)形結合)的基本概念。,如果一個特定的問題可以轉化為一個圖形,那么,思想就整體地把握了問題,并且能創(chuàng)造性地思索問題的解法。 斯蒂恩(美國數(shù)學家),二、幾何直觀(數(shù)形結合)的基本概念。,要看到圖形,借助數(shù)看圖形! 要看到數(shù),借助圖形看數(shù)! 把數(shù)學畫出來! 把事物量出來! 促進了學生形象思維和抽象思維的協(xié)調發(fā)展 溝通了數(shù)學知識之間的聯(lián)系, 從復雜的數(shù)

6、量關系中凸顯最本質的特征,二、幾何直觀(數(shù)形結合)的基本概念。,運用于數(shù)學的各個領域,幾何直觀運用領域,我們不僅在幾何內容教學中要重視幾何直觀,在整個數(shù)學教學中都應該重視幾何直觀,培養(yǎng)幾何直觀應該貫穿于教學始終。,二、幾何直觀(數(shù)形結合)的基本概念。,幾何直觀的表現(xiàn)形式,借助圖形 展開想象 揭示規(guī)律,幾何圖形、線段圖、數(shù)軸、 方格紙、 坐標、方向標、 示意圖、 列表、動畫等一系列,圖形,二、幾何直觀(數(shù)形結合)的基本概念。,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 1 )數(shù)的表示 用直線上的點表示數(shù),可以明確地表示出數(shù)的性質(有始無終,有序性等等);,100以內數(shù)的認識,4,6,10枝,46

7、,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 1 )數(shù)的表示 用直線上的點表示數(shù),可以明確地表示出數(shù)的性質(有始無終,有序性等等);,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 1 )數(shù)的表示 用直線上的點表示數(shù),可以明確地表示出數(shù)的性質(有始無終,有序性等等);,把陰影部分分別用分數(shù)和小數(shù)表示。,分數(shù)( ) 小數(shù)( ),分數(shù)( ) 小數(shù)( ),三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 2 )計算中的形 運算的實物化、圖形化和操作化,便于人們直觀理解數(shù)和計算(擺小棒、畫圖形等)。,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )解決問題中的形 畫線段圖表示數(shù)量關系。,甲比乙多1/4。 (鼓

8、勵學生畫),乙:,甲:,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )解決問題中的形 畫線段圖表示數(shù)量關系。,甲比乙多 1/4 (鼓勵學生畫),三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )解決問題中的形 畫線段圖表示數(shù)量關系。,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )解決問題中的形 解決問題的直觀策略,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )統(tǒng)計中的圖形 條形統(tǒng)計圖直觀地反映出數(shù)量的多少。 折線統(tǒng)計圖形象地表示數(shù)量發(fā)展的趨勢。 扇形統(tǒng)計圖鮮明地說明部分數(shù)量與整體數(shù)量之間的關系。,三、數(shù)形結合思想在小學數(shù)學教材中的體現(xiàn),( 3 )統(tǒng)計中的圖形,三、數(shù)形結合思想在小學

9、數(shù)學教材中的體現(xiàn),( 4 )函數(shù)的多重表示及坐標系,四、數(shù)形結合思想的培養(yǎng),1、在教學中使學生逐步養(yǎng)成畫圖的習慣 教學中應有這樣的導向:能畫圖的盡量畫將相對抽象的思考對象“圖形化”,2、重視變換讓圖形動起來 幾何變換或圖形的運動是幾何,也是整個教學中很重要的內容,它既是學習的對象,也是認識數(shù)學的思想和方法。 例如:平行四邊形、三角形、梯形、圓形等面積公式的推導,讓學生經(jīng)歷公式的形成過程; 圖形的平移和旋轉; 圖形的位置和方向變換、圖形的放大與縮?。?四、數(shù)形結合思想的培養(yǎng),3、學會從“數(shù)”與“形”兩個角度認識 數(shù)學 數(shù)學的許多教學內容、概念都具有“數(shù)”和“形”兩方面的本質特征。數(shù)形結合是認識數(shù)

10、學的基本方法,與其說是方法,不如說這是基本要求。從這一點看,不注重數(shù)形結合在數(shù)學教學中只能讓學生隔靴搔癢。,四、數(shù)形結合思想的培養(yǎng),4、掌握、運用一些基本圖形解決問題 利用基本圖形、表格、數(shù)軸、方格紙等。在教學中要有意識的強化對基本圖形的運用,不斷地運用這些基本圖形去發(fā)現(xiàn)、描述問題,理解、記憶結果,這應該成為教學中關注的目標。,四、數(shù)形結合思想的培養(yǎng),五、數(shù)形結合思想在解題問題中的運用舉例,用兩個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用三個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不

11、同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用四個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用五個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用六個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用七個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用八個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方

12、形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用九個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),用十二個邊長為1的正方形,你能用它們拼出一個長方形嗎?你拼的長方形是什么樣的?還有不同的拼法嗎?,數(shù)形結合運用(一)質數(shù)合數(shù),1,1+3,1+3+5,1+3+5+7,1+3+5+7+9,數(shù)形結合運用(二)計算,1,1+3=22,數(shù)形結合運用(二)計算,1,1+3,1+3+5,數(shù)形結合運用(二)計算,1,1+3,1+3+5=33,數(shù)形結合運用(二)計算,1,1+3,1+3+5,1+3+5+7,數(shù)形結合運用(二)計

13、算,1,1+3,1+3+5,1+3+5+7=44,數(shù)形結合運用(二)計算,1,1+3,1+3+5,1+3+5+7,1+3+5+7+9,數(shù)形結合運用(二)計算,1,1+3,1+3+5,1+3+5+7,1+3+5+7+9=?,數(shù)形結合運用(二)計算,1+3+5+7+9+11,數(shù)形結合運用(二)計算,1+3+5+7+9+11,6 5 4 3 2 1,數(shù)形結合運用(二)計算,計算 : ,數(shù)形結合運用(二)分數(shù)計算,計算 : ,1 2,1 4,1 8,1 16,1 32,“1”,數(shù)形結合運用(二)分數(shù)計算,問題:全班有8個小組,每組6人。每位同學向西部兒童捐書3本,全班一共捐書多少本?,數(shù)形結合運用(二

14、)連乘問題,每人3本,每人3本,問題:全班有8個小組,每組6人。每位同學向西部兒童捐書3本,全班一共捐書多少本?,每人3本,每人3本,每人3本,每人3本,每人3本,每人3本,每組 6人,8個小組,?,用彩色涂出2/51/3=,數(shù)形結合運用(二)分數(shù)乘法,用彩色涂出2/51/3=,數(shù)形結合運用(二)分數(shù)乘法,三年級題目:學校有一段走廊長6米,寬3米。在走廊地面鋪上邊長是3分米的正方形地磚,需要鋪多少塊?,339(平方分米),60301800(平方分米),18009200(塊),大面積小面積,?,數(shù)形結合運用(三)鋪地磚,120分米,60分米,120340(塊),60320(行),4020800(

15、塊),每行塊數(shù)行數(shù)總塊數(shù),五年級題目:在長寬高分別為40dm、30dm、20dm的長方體木塊切割成棱長為8dm的正方體,能切割成多少個?,“大體積小體積”。,數(shù)形結合運用(三)割長方體,六年級題目,如:用長1.1m,寬0.9m的長方形紙片剪成幾個直徑為2dm的圓,可以剪多少個?,“大面積小面積”,數(shù)形結合運用(三)剪圓,六年級題目:請用數(shù)學思維解決問題: 三人同時從工廠乘出租車回家,事先講好三人分擔車費,丙最后到達終點付車費90元,已知甲到了全程的1/3處下了車,乙在全程的2/3處下了車。問甲乙分別應付給丙多少錢?,數(shù)形結合運用(四)支付租車費,第一層次:90元3=30元;,第二層次:1/32

16、/31123,甲:90元1/6=15元; 乙:90元2/6=30元; 丙:90元3/6=45元;,1/3,2/3,“1”,甲:30元3=10元; 乙:30元330元2=25元; 丙:30元330元230元=55元。,30元,第三層次:,長,寬,面積,長方形的面積=長寬,數(shù)量,總價,總價=單價數(shù)量,單價,數(shù)形結合運用(五)矩形運用,(二)解決問題 問題:學校食堂買來一些大米。計劃吃8天,實際每天比計劃多吃5千克,結果提前2天就吃完了。你能算出原計劃每天吃多少千克嗎?,總千克數(shù) =每天吃的千克數(shù)天數(shù),長方形的面積= 長 寬,數(shù)形結合運用(五)矩形運用,(二)解決問題 問題:學校食堂買來一些大米。計

17、劃吃8天,實際每天比計劃多吃5千克,結果提前2天就吃完了。你能算出原計劃每天吃多少千克嗎?,總千克數(shù) =每天吃的千克數(shù)天數(shù),提前2天吃完,多吃 5千克,計劃吃8天,A,B,原計劃每天吃多少千克?,數(shù)形結合運用(五)矩形運用,一個正方形,一條邊減少20%,另一條增加2米,面積保持不變,求原來正方形的面積是多少平方米,數(shù)形結合運用(五)矩形運用,一個正方形,一條邊減少20%,另一條增加2米,面積保持不變,求原來正方形的面積是多少平方米,數(shù)形結合運用(五)矩形運用,一個正方形,一條邊減少20%,另一條增加2米,面積保持不變,求原來正方形的面積是多少平方米,減少20%,2米,數(shù)形結合運用(五)矩形運用

18、,一個正方形,一條邊減少20%,另一條增加2米,面積保持不變,求原來正方形的面積是多少平方米,減少20%,2米,減少1/5,把正方形的邊長平均分成五份,減少其中1份,還剩下4份,數(shù)形結合運用(五)矩形運用,一個正方形,一條邊減少20%,另一條增加2米,面積保持不變,求原來正方形的面積是多少平方米,1份,2米,4份,B,A,C,數(shù)形結合運用(五)矩形運用,泰姬陵坐落于印度古都阿格,是十七世紀莫臥兒帝國皇帝沙杰罕為紀念其愛妃所建,她宏偉壯觀,純白大理石砌建而成的主體建筑叫人心醉神迷,成為世界七大奇跡之一。陵寢以寶石鑲飾,圖案之細致令人叫絕。 傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成,共有100層(見下圖),奢靡之程度,可見一斑。 你知道這個圖案一共花了多少寶石嗎?,數(shù)形結合運用(六)解決問題,問題1:圖案中,第1層到第21層一共有多少顆寶石? 借助幾何圖形之直觀性,引導學生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補成平行四邊形。,數(shù)形結合運用(六)解決問題,A、B、C、D、E進行象棋比賽,每兩人之間都要賽一盤。到現(xiàn)在為止,A已經(jīng)賽了4盤,B賽了3盤,C賽了2盤,D賽了1盤,請問E已經(jīng)賽了幾盤?,數(shù)形結合運用(七)邏輯推理,A、B、C、D、E

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論