版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、24正態(tài)分布教學目標:知識與技能:掌握正態(tài)分布在實際生活中的意義和作用 。過程與方法:結(jié)合正態(tài)曲線,加深對正態(tài)密度函數(shù)的理理。情感、態(tài)度與價值觀:通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì) 。教學重點:正態(tài)分布曲線的性質(zhì)、標準正態(tài)曲線N(0,1) 。教學難點:通過正態(tài)分布的圖形特征,歸納正態(tài)曲線的性質(zhì)。教學課時:2課時教具準備:多媒體教學設想:在總體分布研究中我們選擇正態(tài)分布作為研究的突破口,正態(tài)分布在統(tǒng)計學中是最基本、最重要的一種分布。內(nèi)容分析: 1在實際遇到的許多隨機現(xiàn)象都服從或近似服從正態(tài)分布 當樣本容量無限增大時,頻率分布直方圖就無限接近于一條總體密度曲線,總體密度曲線較科學地反映了總
2、體分布 但總體密度曲線的相關知識較為抽象,學生不易理解,因此在總體分布研究中我們選擇正態(tài)分布作為研究的突破口 正態(tài)分布在統(tǒng)計學中是最基本、最重要的一種分布 2正態(tài)分布是可以用函數(shù)形式來表述的 其密度函數(shù)可寫成:, (0)由此可見,正態(tài)分布是由它的平均數(shù)和標準差唯一決定的 常把它記為 3從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=,并在x=時取最大值 從x=點開始,曲線向正負兩個方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負兩個方向都是以x軸為漸近線的 4通過三組正態(tài)分布的曲線,可知正態(tài)曲線具有兩頭低、中間高、左右對稱的基本特征 5由于正態(tài)分布是由其平均數(shù)和標
3、準差唯一決定的,因此從某種意義上說,正態(tài)分布就有好多好多,這給我們深入研究帶來一定的困難 但我們也發(fā)現(xiàn),許多正態(tài)分布中,重點研究N(0,1),其他的正態(tài)分布都可以通過轉(zhuǎn)化為N(0,1),我們把N(0,1)稱為標準正態(tài)分布,其密度函數(shù)為,x(-,+),從而使正態(tài)分布的研究得以簡化 6結(jié)合正態(tài)曲線的圖形特征,歸納正態(tài)曲線的性質(zhì) 正態(tài)曲線的作圖較難,教科書沒做要求,授課時可以借助多媒體體現(xiàn),學生只要了解大致的情形就行了,關鍵是能通過正態(tài)曲線,引導學生歸納其性質(zhì) 教學過程:學生探究過程:復習引入: 總體密度曲線:樣本容量越大,所分組數(shù)越多,各組的頻率就越接近于總體在相應各組取值的概率設想樣本容量無限增
4、大,分組的組距無限縮小,那么頻率分布直方圖就會無限接近于一條光滑曲線,這條曲線叫做總體密度曲線它反映了總體在各個范圍內(nèi)取值的概率根據(jù)這條曲線,可求出總體在區(qū)間(a,b)內(nèi)取值的概率等于總體密度曲線,直線x=a,x=b及x軸所圍圖形的面積觀察總體密度曲線的形狀,它具有“兩頭低,中間高,左右對稱”的特征,具有這種特征的總體密度曲線一般可用下面函數(shù)的圖象來表示或近似表示:式中的實數(shù)、是參數(shù),分別表示總體的平均數(shù)與標準差,的圖象為正態(tài)分布密度曲線,簡稱正態(tài)曲線講解新課:一般地,如果對于任何實數(shù),隨機變量X滿足,則稱 X 的分布為正態(tài)分布(normal distribution ) 正態(tài)分布完全由參數(shù)和
5、確定,因此正態(tài)分布常記作如果隨機變量 X 服從正態(tài)分布,則記為X. 經(jīng)驗表明,一個隨機變量如果是眾多的、互不相干的、不分主次的偶然因素作用結(jié)果之和,它就服從或近似服從正態(tài)分布例如,高爾頓板試驗中,小球在下落過程中要與眾多小木塊發(fā)生碰撞,每次碰撞的結(jié)果使得小球隨機地向左或向右下落,因此小球第1次與高爾頓板底部接觸時的坐標 X 是眾多隨機碰撞的結(jié)果,所以它近似服從正態(tài)分布在現(xiàn)實生活中,很多隨機變量都服從或近似地服從正態(tài)分布例如長度測量誤差;某一地區(qū)同年齡人群的身高、體重、肺活量等;一定條件下生長的小麥的株高、穗長、單位面積產(chǎn)量等;正常生產(chǎn)條件下各種產(chǎn)品的質(zhì)量指標(如零件的尺寸、纖維的纖度、電容器的
6、電容量、電子管的使用壽命等);某地每年七月份的平均氣溫、平均濕度、降雨量等;一般都服從正態(tài)分布因此,正態(tài)分布廣泛存在于自然現(xiàn)象、生產(chǎn)和生活實際之中正態(tài)分布在概率和統(tǒng)計中占有重要的地位說明:1參數(shù)是反映隨機變量取值的平均水平的特征數(shù),可以用樣本均值去佑計;是衡量隨機變量總體波動大小的特征數(shù),可以用樣本標準差去估計2.早在 1733 年,法國數(shù)學家棣莫弗就用n!的近似公式得到了正態(tài)分布之后,德國數(shù)學家高斯在研究測量誤差時從另一個角度導出了它,并研究了它的性質(zhì),因此,人們也稱正態(tài)分布為高斯分布 2正態(tài)分布)是由均值和標準差唯一決定的分布通過固定其中一個值,討論均值與標準差對于正態(tài)曲線的影響 3通過對
7、三組正態(tài)曲線分析,得出正態(tài)曲線具有的基本特征是兩頭底、中間高、左右對稱 正態(tài)曲線的作圖,書中沒有做要求,教師也不必補上 講課時教師可以應用幾何畫板,形象、美觀地畫出三條正態(tài)曲線的圖形,結(jié)合前面均值與標準差對圖形的影響,引導學生觀察總結(jié)正態(tài)曲線的性質(zhì) 4正態(tài)曲線的性質(zhì):(1)曲線在x軸的上方,與x軸不相交 (2)曲線關于直線x=對稱 (3)當x=時,曲線位于最高點 (4)當x時,曲線上升(增函數(shù));當x時,曲線下降(減函數(shù)) 并且當曲線向左、右兩邊無限延伸時,以x軸為漸近線,向它無限靠近 (5)一定時,曲線的形狀由確定 越大,曲線越“矮胖”,總體分布越分散;越小曲線越“瘦高”總體分布越集中:五條
8、性質(zhì)中前三條學生較易掌握,后兩條較難理解,因此在講授時應運用數(shù)形結(jié)合的原則,采用對比教學 5標準正態(tài)曲線:當=0、=l時,正態(tài)總體稱為標準正態(tài)總體,其相應的函數(shù)表示式是,(-x+)其相應的曲線稱為標準正態(tài)曲線 標準正態(tài)總體N(0,1)在正態(tài)總體的研究中占有重要的地位 任何正態(tài)分布的概率問題均可轉(zhuǎn)化成標準正態(tài)分布的概率問題 講解范例:例1給出下列三個正態(tài)總體的函數(shù)表達式,請找出其均值和標準差 ()()()答案:(1)0,1;(2)1,2;(3)-1,0.5 1.標準正態(tài)總體的概率問題: 對于標準正態(tài)總體N(0,1),是總體取值小于的概率,即 ,其中,圖中陰影部分的面積表示為概率 只要有標準正態(tài)分
9、布表即可查表解決.從圖中不難發(fā)現(xiàn):當時,;而當時,(0)=0.5 2.小概率事件的含義(原則) 發(fā)生概率一般不超過5的事件,即事件在一次試驗中幾乎不可能發(fā)生 假設檢驗方法的基本思想:首先,假設總體應是或近似為正態(tài)總體,然后,依照小概率事件幾乎不可能在一次試驗中發(fā)生的原理對試驗結(jié)果進行分析 假設檢驗方法的操作程序,即“三步曲” 一是提出統(tǒng)計假設,教科書中的統(tǒng)計假設總體是正態(tài)總體;二是確定一次試驗中的a值是否落入(-3,+3);三是作出判斷 對于正態(tài)總體取值的概率:在區(qū)間(-,+)、(-2,+2)、(-3,+3)內(nèi)取值的概率分別為68.3%、95.4%、99.7% 因此我們時常只在區(qū)間(-3,+3
10、)內(nèi)研究正態(tài)總體分布情況,而忽略其中很小的一部分 鞏固練習:書本第74頁 1,2,3課后作業(yè): 書本第75頁 習題2. 4 A組 1 , 2 B組1 , 2教學反思:1在實際遇到的許多隨機現(xiàn)象都服從或近似服從正態(tài)分布 在上一節(jié)課我們研究了當樣本容量無限增大時,頻率分布直方圖就無限接近于一條總體密度曲線,總體密度曲線較科學地反映了總體分布 但總體密度曲線的相關知識較為抽象,學生不易理解,因此在總體分布研究中我們選擇正態(tài)分布作為研究的突破口 正態(tài)分布在統(tǒng)計學中是最基本、最重要的一種分布 2正態(tài)分布是可以用函數(shù)形式來表述的 其密度函數(shù)可寫成:, (0)由此可見,正態(tài)分布是由它的平均數(shù)和標準差唯一決定的 常把它記為 3從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=,并在x=時取最大值 從x=點開始,曲線向正負兩個方向遞減延伸,不斷逼近x軸,但永不與x軸相交,因此說曲線在正負兩個方向都是以x軸為漸近線的 4通過三組正態(tài)分布的曲線,可知正態(tài)曲線具有兩頭低、中間高、左右對稱的基本特征。由于正態(tài)分布是由其平均數(shù)和標準差唯一決定的,因此從某種意義上說,正態(tài)分布就有好多好多,這給我們深入研究帶來一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告牌建設施工合同格式
- 2024企業(yè)租車服務合同
- 2024年學生貸款償還協(xié)議
- 工程項目合作變更協(xié)議書
- 幼兒園勞動合同樣本
- 建筑領域簡易雇傭合同
- 勞動協(xié)商協(xié)議范本
- 2024打樁工程勞務合同范本
- 外匯借款合同書撰寫指南
- 合作經(jīng)營協(xié)議書范本編寫技巧
- 河北省石家莊市第四十一中學2023-2024學年八年級上學期期中數(shù)學試題(解析版)
- 2023-2024學年全國初中八年級上英語人教版期中考卷(含答案解析)
- 2024化妝品營銷策劃方案
- 《人工智能基礎》課件-AI的前世今生:她從哪里來
- 中醫(yī)師承跟師筆記50篇
- 滬教版四年級上冊期中復習數(shù)學試卷(一)
- 直流電機設計參數(shù)計算
- 核心素養(yǎng)下小學語文教學策略探究
- 十以內(nèi)加減法口算題
- 實驗一蒸餾工業(yè)乙醇
- 海爾商用空調(diào)產(chǎn)品故障代碼簡明手冊(最終版本)2011.6.1
評論
0/150
提交評論