![物理學(xué)論文-The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity .doc_第1頁](http://file.renrendoc.com/FileRoot1/2013-12/17/fd5f6901-eac6-4f93-bac8-1647cad17b1a/fd5f6901-eac6-4f93-bac8-1647cad17b1a1.gif)
![物理學(xué)論文-The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity .doc_第2頁](http://file.renrendoc.com/FileRoot1/2013-12/17/fd5f6901-eac6-4f93-bac8-1647cad17b1a/fd5f6901-eac6-4f93-bac8-1647cad17b1a2.gif)
![物理學(xué)論文-The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity .doc_第3頁](http://file.renrendoc.com/FileRoot1/2013-12/17/fd5f6901-eac6-4f93-bac8-1647cad17b1a/fd5f6901-eac6-4f93-bac8-1647cad17b1a3.gif)
![物理學(xué)論文-The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity .doc_第4頁](http://file.renrendoc.com/FileRoot1/2013-12/17/fd5f6901-eac6-4f93-bac8-1647cad17b1a/fd5f6901-eac6-4f93-bac8-1647cad17b1a4.gif)
![物理學(xué)論文-The Equivalence Principle, the Covariance Principle and the Question of Self-Consistency in General Relativity .doc_第5頁](http://file.renrendoc.com/FileRoot1/2013-12/17/fd5f6901-eac6-4f93-bac8-1647cad17b1a/fd5f6901-eac6-4f93-bac8-1647cad17b1a5.gif)
已閱讀5頁,還剩49頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
物理學(xué)論文-TheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityTheEquivalencePrinciple,theCovariancePrincipleandtheQuestionofSelf-ConsistencyinGeneralRelativityC.Y.LoAppliedandPureResearchInstitute17NewcastleDrive,Nashua,NH03060,USASeptember2001AbstractTheequivalenceprinciple,whichstatesthelocalequivalencebetweenaccelerationandgravity,requiresthatafreefallingobservermustresultinaco-movinglocalMinkowskispace.Ontheotherhand,covarianceprincipleassumesanyGaussiansystemtobevalidasaspace-timecoordinatesystem.Giventhemathematicalexistenceoftheco-movinglocalMinkowskispacealongatime-likegeodesicinaLorentzmanifold,acrucialquestionforasatisfactionoftheequivalenceprincipleiswhetherthegeodesicrepresentsaphysicalfreefall.Forinstance,ageodesicofanon-constantmetricisunphysicaliftheaccelerationonarestingobserverdoesnotexist.ThisanalysisismodeledafterEinsteinillustrationoftheequivalenceprinciplewiththecalculationoflightbending.Tojustifyhiscalculationrigorously,itisnecessarytoderivetheMaxwell-NewtonApproximationwithphysicalprinciplesthatleadtogeneralrelativity.Itisshown,asexpected,thattheGalileantransformationisincompatiblewiththeequivalenceprinciple.Thus,generalmathematicalcovariancemustberestrictedbyphysicalrequirements.Moreover,itisshownthroughanexamplethataLorentzmanifoldmaynotnecessarilybediffeomorphictoaphysicalspace-time.Alsoobservationsupportsthataspacetimecoordinatesystemhasmeaninginphysics.Ontheotherhand,Pauliversionleadstotheincorrectspeculationthatingeneralrelativityspace-timecoordinateshavenophysicalmeaning1.Introduction.Currently,amajorproblemingeneralrelativityisthatanyRiemanniangeometrywiththepropermetricsignaturewouldbeacceptedasavalidsolutionofEinsteinequationof1915,andmanyunphysicalsolutionswereaccepted1.Thisis,inpart,duetothefactthatthenatureofthesourcetermhasbeenobscuresincethebeginning2,3.Moreover,themathematicalexistenceofasolutionisoftennotaccompaniedwithunderstandingintermsofphysics1,4,5.Consequently,theadequacyofasourceterm,foragivenphysicalsituation,isoftennotclear6-9.Pauli10consideredthathetheoryofrelativitytobeanexampleshowinghowafundamentalscientificdiscovery,sometimesevenagainsttheresistanceofitscreator,givesbirthtofurtherfruitfuldevelopments,followingitsownautonomouscourse.Thus,inspiteofobservationalconfirmationsofEinsteinpredictions,oneshouldexaminewhethertheoreticalself-consistencyissatisfied.Tothisend,onemayfirstexaminetheconsistencyamongphysicalrincipleswhichleadtogeneralrelativity.Thefoundationofgeneralrelativityconsistsofa)thecovarianceprinciple,b)theequivalenceprinciple,andc)thefieldequationwhosesourcetermissubjectedtomodification3,7,8.Einsteinequivalenceprincipleisthemostcrucialforgeneralrelativity10-13.Inthispaper,theconsistencybetweentheequivalenceprincipleandthecovarianceprinciplewillbeexaminedtheoretically,inparticularthroughexamples.Moreover,theconsistencybetweentheequivalenceprincipleandEinsteinfieldequationof1915isalsodiscussed.Theprincipleofcovariance2statesthathegenerallawsofnaturearetobeexpressedbyequationswhichholdgoodforallsystemsofcoordinates,thatis,arecovariantwithrespecttoanysubstitutionswhatever(generallycovariant).Thecovarianceprinciplecanbeconsideredasconsistingoftwofeatures:1)themathematicalformulationintermsofRiemanniangeometryand2)thegeneralvalidityofanyGaussiancoordinatesystemasaspace-timecoordinatesysteminphysics.Feature1)waseloquentlyestablishedbyEinstein,butfeature2)remainsanunverifiedconjecture.IndisagreementwithEinstein2,Eddington11pointedoutthatpaceisnotalotofpointsclosetogether;itisalotofdistancesinterlocked.EinsteinacceptedEddingtoncriticismandnolongeradvocatedtheinvalidargumentsinhisbook,heMeaningofRelativityof1921.EinsteinalsopraisedEddingtonbookof1923tobethefinestpresentationofthesubjecteverwrittenMoreover,incontrasttothebeliefofsometheorists14,15,ithasneverbeenestablishedthattheequivalenceofallframesofreferencerequirestheequivalenceofallcoordinatesystems9.Ontheotherhand,ithasbeenpointedoutthat,becauseoftheequivalenceprinciple,themathematicalcovariancemustberestricted8,9,16.Moreover,Kretschmann17pointedoutthatthepostulateofgeneralcovariancedoesnotmakeanyassertionsaboutthephysicalcontentofthephysicallaws,butonlyabouttheirmathematicalformulation,andEinsteinentirelyconcurredwithhisview.Pauli10pointedoutfurther,hegenerallycovariantformulationofthephysicallawsacquiresaphysicalcontentonlythroughtheprincipleofequivalence.Nevertheless,Einstein2arguedthat.thereisnoimmediatereasonforpreferringcertainsystemsofcoordinatestoothers,thatistosay,wearriveattherequirementofgeneralco-variance.Thus,Einsteincovarianceprincipleisonlyaninterimconjecture.Apparently,hecouldmeanonlytoamathematicalcoordinatesystemforcalculationsincehisequivalenceprinciple,amongothers,isanimmediatereasonforpreferringcertainsystemsofcoordinatesinphysics(壯5&6).Notethatamathematicalgeneralcovariancerequires,asHawkingdeclared18,theindistinguishabilitybetweenthetime-coordinateandaspace-coordinate.Ontheotherhand,theequivalenceprincipleisrelatedtotheMinkowskispace,whichrequiresadistinctionbetweenthetime-coordinateandaspace-coordinate.Hence,themathematicalgeneralcovarianceisinherentlyinconsistentwiththeequivalenceprinciple.Althoughtheequivalenceprincipledoesnotdeterminethespace-timecoordinates,itdoesrejectphysicallyunrealizablecoordinatesystems9.WhereasinspecialrelativitytheMinkowskimetriclimitsthecoordinatetransformations,amonginertialframesofreference,totheLorentz-Poincartransformations;ingeneralrelativitytheequivalenceprinciplelimitsthephysicalcoordinatetransformationstobeamongvalidspace-timecoordinatesystems,whichareinprinciplephysicallyrealizable.Thus,theroleoftheMinkowskimetricisextendedbytheequivalenceprincipleeventowheregravityispresent.Mathematically,however,theequivalenceprinciplecanbeincompatiblewithasolutionofEinsteinequation,evenifitisaLorentzmanifold(whosespace-timemetrichasthesamesignatureasthatoftheMinkowskispace).IthasbeenproventhatcoordinaterelativisticcausalitycanbeviolatedforsomeLorentzmanifolds9,16.Unfortunately,duetoinadequatephysicalunderstanding,somerelativists19-23believethatapropermetricsignaturewouldimplyasatisfactionoftheequivalenceprinciple.Themisconceptionthat,inaLorentzmanifold,areefallwouldautomaticallyresultinalocalMinkowskispace20,23,hasdeep-rootedphysicalmisunderstandingsfrombelievinginthegeneralmathematicalcovarianceinphysics.Althoughtheequivalenceprincipleforaphysicalspace-time1)isclearlystated,theconditionsforitssatisfactioninaLorentzmanifoldhavebeenmisleadinglyoversimplified.Thus,itisnecessarytoclarifyfirst,intermsofphysics,themeaningoftheequivalenceprincipleanditssatisfaction(2&3).Thecrucialconditionforasatisfactionoftheequivalenceprincipleisthatthegeodesicrepresentsaphysicalfreefall.ThemathematicalexistenceoflocalMinkowskispacesmeansonlymathematicalcompatibilityofthetheoryofgeneralrelativitytoRiemanniangeometry.Then,itbecomespossibletodemonstratemeaningfullythroughdetailedexamplesthatdiffeomorphiccoordinatesystemsmaynotbeequivalentinphysics(5&6).Moreover,toavoidprejudiceduetotheoreticalpreferences,thesedemonstrationsarebasedontheoreticalinconsistency.Tothisend,Einsteinillustrationoftheequivalenceprincipleinhiscalculationofthelightbendingisusedasamodelforthisanalysis.However,inhiscalculation,therearerelatedtheoreticalproblemsthatmustbeaddressed.First,thenotionofgaugeusedinhiscalculationisactuallynotgenerallyvalid9aswillbeshowninthispaper.Also,itisknownthatvalidityofthe1915Einsteinequationisquestionable7,8,24-26.Foracompletetheoreticalanalysis,theseissuesshould,ofcourse,beaddressedthoroughly.Nevertheless,forthevalidityofEinsteincalculationonthelightbending2,itissufficienttojustifythelinearfieldequationasavalidapproximation.Forthispurpose,theMaxwell-NewtonApproximation(i.e.,thelinearfieldequation)isderiveddirectlyfromthephysicalprinciplesthatleadtogeneralrelativity(4).Moreover,thereareintrinsicallyunphysicalLorentzmanifoldsnoneofwhichisdiffeomorphic21toaphysicalspace-time(7).Thus,toacceptaLorentzmanifoldasvalidinphysics,itisnecessarytoverifytheequivalenceprinciplewithaspace-timecoordinatesystemforphysicalinterpretations.Then,forthepurposeofcalculationonly,anydiffeomorphismcanbeusedtoobtainnewcoordinates.Itisonlyinthissensethatacoordinatesystemforaphysicalspace-timecanbearbitrary.Inthispaper,therequirementofageneralcovarianceamongallconceivablemathematicalcoordinatesystems2willbefurtherconfirmedtobeanover-extendeddemand9.(NotethatEddington11didnotacceptthegaugerelatedtogeneralmathematicalcovariance.)Analysisshowsthatasatisfactionoftheequivalenceprinciplerestrictedcovariance(壯3-5).Afterthisnecessaryrectification,somecurrentlyacceptedwell-knownLorentzmanifoldswouldbeexposedasunphysical(7).But,generalrelativityasaphysicaltheoryisunaffected9.Itishopedthatthisclarificationwouldhelpurtherfruitfuldevelopments,followingitsownautonomouscourse10.2.EinsteinEquivalencePrinciple,FreeFall,andPhysicalSpace-TimeCoordinatesInitiallybasedontheobservationthatthe(passive)gravitationalmassandinertialmassareequivalent,Einsteinproposedtheequivalenceofuniformaccelerationandgravity.In1916,thisproposalisextendedtothelocalequivalenceofaccelerationandgravity2becausegravityisingeneralnotuniform.Thus,ifgravityisrepresentedbythespace-timemetric,thegeodesicisthemotionofaparticleundertheinfluenceofgravity.Then,foranobserverinafreefall,thelocalmetricislocallyconstant.Tobeconsistentwithspecialrelativity,suchalocalmetricisrequiredtobelocallyaMinkowskispace2.Thus,acentralproblemingeneralrelativityiswhetherthegeodesicrepresentsaphysicalfreefall.However,validityofthisglobalpropertyisrealizedlocallythroughasatisfactionoftheequivalenceprinciple.Moreover,Eddington11observedthatspecialrelativityshouldapplyonlytophenomenaunrelatedtothesecondorderderivativesofthemetric.Thus,Eins
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年云南貨運(yùn)從業(yè)資格證考試試題及答案解析大全
- 小學(xué)二年級(jí)數(shù)學(xué)下學(xué)期口算練習(xí)
- 電梯保養(yǎng)合同(2篇)
- 2024-2025學(xué)年高中物理課時(shí)分層作業(yè)8原子核的組成與核力含解析教科版選修3-5
- 中圖版地理八年級(jí)下冊(cè)《第六節(jié) 學(xué)習(xí)與探究-走進(jìn)埃及》聽課評(píng)課記錄1
- 物業(yè)公司前臺(tái)工作總結(jié)
- 第四季度綜治工作總結(jié)
- 數(shù)學(xué)廣角第一課時(shí)(說課稿)-2023-2024學(xué)年四年級(jí)下冊(cè)數(shù)學(xué)人教版
- 股權(quán)投資合作框架合同范本
- 整形醫(yī)美醫(yī)生聘用合同范本
- 2025年度年度表彰大會(huì)會(huì)議服務(wù)合同
- 2025年個(gè)人土地承包合同樣本(2篇)
- 2024-2025學(xué)年教科版八年級(jí)物理下冊(cè) 第12章 機(jī)械能 綜合素質(zhì)評(píng)價(jià)卷(含答案)
- 網(wǎng)絡(luò)貨運(yùn)行業(yè)研究報(bào)告
- 【人教版化學(xué)】選擇性必修1 知識(shí)點(diǎn)默寫小紙條(答案背誦版)
- 人教版七年級(jí)英語上冊(cè)單元重難點(diǎn)易錯(cuò)題Unit 2 單元話題完形填空練習(xí)(含答案)
- 00015-英語二自學(xué)教程-unit1
- 新版建設(shè)工程工程量清單計(jì)價(jià)標(biāo)準(zhǔn)解讀
- 云南省昆明市盤龍區(qū)2023-2024學(xué)年三年級(jí)上學(xué)期語文期末試卷
- 2024-2025年突發(fā)緊急事故(急救護(hù)理學(xué))基礎(chǔ)知識(shí)考試題庫與答案
- 左心耳封堵術(shù)護(hù)理
評(píng)論
0/150
提交評(píng)論