全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
高中數(shù)學(xué) 偷分 技巧 沒看可虧大了 高中學(xué)習(xí)說一千道一萬 最重要的還是分?jǐn)?shù) 大家平時辛辛苦苦聽課做題 都為了考試得高分 沒錯 付出努力 認(rèn)真學(xué)是高分的前提 但 如果考試時候有一些小技巧可以讓你省時拿分 那當(dāng)然要好好記住啦 但 如果考試時候有一些小技巧可以讓你省時拿分 那當(dāng)然要好好記住啦 1 選擇題中如果有算錐體體積和表面積的話 直接看選項面積找到差2倍的小的就是答案 體積找到差3倍的小的 就是答案 屢試不爽 2 三角函數(shù)第二題 如求a cosB cosC b c coA之類的先邊化角然后把第一題算的比如角A等于60度直接 假設(shè)B和C都等于60 帶入求解 省時省力 3 空間幾何證明過程中有一步實在想不出把沒用過的條件直接寫上然后得出想不出的那個結(jié)論即可 如果第一題 真心不會做直接寫結(jié)論成立則第二題可以直接用 用常規(guī)法的同學(xué)建議先隨便建立個空間坐標(biāo)系 做錯了還有2分 可以得 4 立體幾何中第二問叫你求余弦值啥的一般都用坐標(biāo)法 如果求角度則常規(guī)法簡單 5 選擇題中求取值范圍的直接觀察答案從每個選項中取與其他選項不同的特殊點帶入能成立的就是答案 6 遇到這樣的選項 A 1 2 B 1 C 3 2 D 5 2 這樣的話答案一般是D因為B可以看作是2 2 前面三個都是出題者 湊出來的 如果答案在前面3個的話 D應(yīng)該是2 4 2 以上是些小技巧 不過 正如老師說了100遍的 大題能寫多少寫多少 不會也不要全空著 是的 偷分的技大題能寫多少寫多少 不會也不要全空著 是的 偷分的技 巧 就在大題上 巧 就在大題上 大題文科第一題一般是三角函數(shù)題 第一步一般都是需要將三角函數(shù)化簡成標(biāo)準(zhǔn)形式Asin x c 接下來按題做就行了接下來按題做就行了 注意二倍角的降冪作用以及輔助角 合一 公式 周期公式 對稱軸 對稱中心 單調(diào)區(qū) 間 最大值 最小值都是用整體法求解 求最值時通過自變量的范圍推到里面整體u x 的范圍 然后可以 直接畫sinu的圖像 避免畫平移的圖像 這部分題還有一種就是解三角形的問題 運用正弦定理 余弦定理 面積公式 通常有兩個方向 即角化成邊和 邊化成角 得根據(jù)具體問題具體分析哪個方便一些 遇到復(fù)雜的題就把未知量列成未知數(shù) 根據(jù)定理列方程組 然后解方程組即可 理科如果考數(shù)列題的話 注意等差 等比數(shù)列通項公式 前n項和公式 證明數(shù)列是等差或等比直接用定義法 后 項減前項為常數(shù) 后項比前項為常數(shù) 求數(shù)列通項公式 如為等差或等比直接代公式即可 數(shù)列的求和第一步要注意通項公式的形式 然后選擇合適的方法 直接法 分組求和法 裂項相消法 錯位相減 法 倒序相加法等 進行求解 如有其它問題 注意放縮法證明 還有就是數(shù)列可以看成一個以n為自變量的函 數(shù) 第二題是立體幾何題第二題是立體幾何題 證明題注意各種證明類型的方法 判定定理 性質(zhì)定理 注意引輔助線 一般都是對角 線 中點 成比例的點 等腰等邊三角形中點等等 理科其實證明不出來直接用向量法也是可以的 計算題主要 是體積 注意將字母換位 等體積法 線面距離用等體積法 理科還有求二面角 線面角等 用建立空間坐標(biāo)系的方法 向量法 比較簡單 注意各個 點的坐標(biāo)的計算 不要算錯 第三題是概率與統(tǒng)計題第三題是概率與統(tǒng)計題 主要有頻率分布直方圖 注意縱坐標(biāo) 頻率 組距 求概率的問題 文科列舉 然后 數(shù)數(shù) 別數(shù)錯 數(shù)少了啊 概率 滿足條件的個數(shù) 所有可能的個數(shù) 理科用排列組合算數(shù) 獨立性檢驗根據(jù)公式算K方值 別算錯數(shù)了 會查表 用1減查完的概率 回歸分析 根據(jù) 數(shù)據(jù)代入公式 公式中各項的意義 即可求出直線方程 注意 x平均 y平均 點滿足直線方程 理科還有隨機 變量分布列問題 注意列表時把可能取到的所有值都列出 別少了 然后分別算概率 最后檢查所有概率和是否 是1 不是1說明要不你概率算錯了 要不隨機變量數(shù)少了 第四題是函數(shù)題第四題是函數(shù)題 第一步別忘了先看下定義域 一般都得求導(dǎo) 求單調(diào)區(qū)間時注意與定義域取交 看看題型 將 題型轉(zhuǎn)化一下 轉(zhuǎn)化到你學(xué)過的內(nèi)容 利用導(dǎo)數(shù)判斷單調(diào)性 含參數(shù)時要利用分類討論思想 一般求導(dǎo)完通分完 分子是二次函數(shù)的比較多 討論開口a 0 a 0和后兩種情況下 0 求極值 根據(jù)單調(diào)區(qū)間列表或畫圖像簡圖 求最值 所有的極值點與兩端點值比較 等 典型的有恒成立問 題 存在問題 注意與恒成立問題的區(qū)別 不管是什么都要求函數(shù)的最大值或最小值 注意方法以及比較定義 域端點值 注意函數(shù)圖象 數(shù)形結(jié)合思想 求方程的根或解 曲線的交點個數(shù) 的運用 證明有關(guān)的問題可以利用證明的各種方法 綜合法 分析法 反證法 理科的數(shù)學(xué)歸納法 多問的時候注意后多問的時候注意后 面的問題一般需要用到前面小問的結(jié)論 面的問題一般需要用到前面小問的結(jié)論 抽象的證明問題別光用眼睛在那看 得設(shè)出里面的未知量 通過設(shè)而 不求思想證明問題 第五題是圓錐曲線題第五題是圓錐曲線題 第一問求曲線方程 注意方法 定義法 待定系數(shù)法 直接求軌跡法 反求法 參數(shù)方程 法等等 一定檢查下第一問算的數(shù)對不 要不如果算錯了第二問做出來了也白算了 第二問有直線與圓錐曲線相交時 記住 聯(lián)立完事用聯(lián)立 第一步聯(lián)立 第一步聯(lián)立 根據(jù)韋達定理得出兩根之和 兩根之 差 因一般都是交于兩點 注意驗證判別式 0 設(shè)直線時注意討論斜率是否存在 第二步也是最關(guān)鍵的就是用聯(lián)立 第二步也是最關(guān)鍵的就是用聯(lián)立 關(guān)鍵是怎么用聯(lián)立 即如何將題里的條件轉(zhuǎn)化成你剛才聯(lián)立完的x1 x2和 x1x2 然后將結(jié)果代入即可 通常涉及的題型有 弦長問題弦長問題 代入弦長公式 定比分點問題定比分點問題 根據(jù)比例關(guān)系建立三點坐標(biāo)之間的一個關(guān)系式 橫坐標(biāo)或縱坐標(biāo) 再根據(jù)根與系數(shù)的關(guān)系建立 圓錐曲線上的兩點坐標(biāo)的兩個關(guān)系式 從這三個關(guān)系式入手解決 點對稱問題點對稱問題 利用兩點關(guān)于直線對稱的兩個條件 即這兩點的連線與對稱軸垂直和這兩點的中點在對稱軸上 定點問題定點問題 直線y kx b過定點即找出k與b的關(guān)系 如b 5k 7 然后將b代入到直線方程y kx 5k 7 k x 5 7即 可找出定點 5 7 定值問題定值問題 基本思想是函數(shù)思想 將要證明或要求解的量表示為某個合適變量 斜率 截距或坐標(biāo) 的函數(shù) 通 過適當(dāng)化簡 消去變量即得定值 最值或范圍問題最值或范圍問題 基本思想
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2021學(xué)年遼寧省沈陽市郊聯(lián)體高一下學(xué)期期末考試地理試題
- 小學(xué)四年級多位數(shù)乘除法400題
- 學(xué)校愛國衛(wèi)生建設(shè)工作計劃
- 兒童蛀牙傷害大
- 命題作文“釋放”寫作指導(dǎo)及佳作
- 《白血病的規(guī)范化療》課件
- 《加油站HSE管理》課件
- 《龍蟠長城模板》課件
- 汽車工程師的工作總結(jié)
- 化工行業(yè)銷售業(yè)績總結(jié)
- 電影放映設(shè)備日常維護保養(yǎng)規(guī)程
- TSHZSAQS 00255-2024 食葵病蟲害防治技術(shù)規(guī)范
- 食材配送消防安全應(yīng)急預(yù)案
- 《供應(yīng)鏈管理》期末考試復(fù)習(xí)題庫(含答案)
- 招標(biāo)文件范本江蘇版
- 人教版高中地理選擇性必修1第一章地球的運動單元檢測含答案
- 【人民日報】72則金句期末評語模板-每頁6張
- 2024年海峽出版發(fā)行集團有限責(zé)任公司招聘筆試沖刺題(帶答案解析)
- 人民調(diào)解卷宗規(guī)范化制作說明
- 眼視光學(xué)理論和方法智慧樹知到期末考試答案2024年
- 內(nèi)鏡下腦腫瘤切除手術(shù)
評論
0/150
提交評論