蘇科版數(shù)學(xué)九年級上冊2.4圓周角課件(共18張PPT)_第1頁
蘇科版數(shù)學(xué)九年級上冊2.4圓周角課件(共18張PPT)_第2頁
蘇科版數(shù)學(xué)九年級上冊2.4圓周角課件(共18張PPT)_第3頁
蘇科版數(shù)學(xué)九年級上冊2.4圓周角課件(共18張PPT)_第4頁
蘇科版數(shù)學(xué)九年級上冊2.4圓周角課件(共18張PPT)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、圓周角圓周角(1) 把圓心角把圓心角POQ的頂點的頂點O移到點移到點A、B1 1、 B2 2、C處,形成了不同于圓心角的一些處,形成了不同于圓心角的一些 角,圖中角,圖中B1 1、B2 2的頂點位置的頂點位置有什么有什么 共同特征?共同特征? PQ O A B1 B2 C 什么樣的角叫做圓心角?什么樣的角叫做圓心角? 圓周角的定義圓周角的定義 O B C A 頂點在圓上頂點在圓上,并且,并且兩邊都和兩邊都和 圓相交圓相交的角叫做圓周角。的角叫做圓周角。 頂點在圓上頂點在圓上 角的兩邊和圓相交角的兩邊和圓相交 特征:特征: 練習(xí)練習(xí):判斷下圖中的角是否是圓周角。判斷下圖中的角是否是圓周角。 OO

2、 A A OO B B OO DD O O E E (1) (2) (3) (4) (5) (6) O c O F O B C 1 1、請在、請在OO中畫出中畫出 所對的圓心角所對的圓心角 和圓周角,你能畫出多少個符合條件的和圓周角,你能畫出多少個符合條件的 圓心角和圓周角圓心角和圓周角? ? 2 2、觀察你所畫圖形,、觀察你所畫圖形, 思考圓心與圓周角之思考圓心與圓周角之 間有幾種位置關(guān)系?間有幾種位置關(guān)系? 圓心圓心O O與與BACBAC的位置關(guān)系的位置關(guān)系 圓心圓心O O在在 BACBAC的的 一邊上一邊上 圓心圓心O O在在 BACBAC的的 內(nèi)部內(nèi)部 圓心圓心O O在在 BACBAC

3、的的 外部外部 已知:已知:OO中中, 所對的圓周角是所對的圓周角是BACBAC, 圓心角是圓心角是BOCBOC。 求證:求證:BACBAC BOCBOC。 1 2 A O B C OA=OC OA=OC OCA=BAC OCA=BAC 證明:證明: BOC BOC是是AOCAOC的外角的外角 BOC=BAC+OCA BOC=BAC+OCA BOC=2BAC BOC=2BAC 即即BAC= BOC.BAC= BOC. 2 1 O A B C O A BC C O A B 圓心圓心O O在在 BACBAC的的 一邊上一邊上 圓心圓心O O在在 BACBAC的的 內(nèi)部內(nèi)部 圓心圓心O O在在 BA

4、CBAC的的 外部外部 思考:當(dāng)圓心思考:當(dāng)圓心O O在在BACBAC的內(nèi)部或外部時,的內(nèi)部或外部時, 還成立嗎?還成立嗎? 1 BACBOC 2 O A B D O A C D O A B C D 圓心圓心O O在在BACBAC的內(nèi)部的內(nèi)部 O A C D O A B D BADBOD 1 2 1 2 DACDOC 11 () 22 BAC BADDAC BODDOCBOC 1 2 DACDOC 1 2 DABDOB O A B D C O A D C O A B 圓心圓心O O在在BACBAC的外部的外部 D C O A D O A B D C O A D O A B D 1 () 2 1

5、 2 BACDACDAB DOCDOBBOC 同弧所對的圓周角的度數(shù),同弧所對的圓周角的度數(shù), 都等于該弧所對的圓心角的都等于該弧所對的圓心角的 一半。一半。 = = = 思考:思考:若兩條弧相等,則它們所對的圓若兩條弧相等,則它們所對的圓 心角有什么關(guān)系?所對的圓周角呢?心角有什么關(guān)系?所對的圓周角呢? O A B C D P Q 同弧或等弧所對的圓周角相等,都等同弧或等弧所對的圓周角相等,都等 于這條弧所對的圓心角的度數(shù)的一半。于這條弧所對的圓心角的度數(shù)的一半。 圓周角定理圓周角定理: : O B C A D E 1 1、如圖,點、如圖,點A A、B B、C C、D D在圓在圓O O上,點

6、上,點A A 與點與點D D在點在點B B、C C所在直線的同側(cè),所在直線的同側(cè), BAC= 35BAC= 35,則(,則(1 1)BDC=BDC= ,理,理 由是由是 ; (2 2)BOC=BOC= ,理由,理由 是是 。 35 70 同弧所對的圓周角相等。同弧所對的圓周角相等。 同弧所對的圓周角等于該同弧所對的圓周角等于該 弧所對的圓心角的一半?;∷鶎Φ膱A心角的一半。 拓展提升 O的弦AB、DC的延長線相交于點P, AOD=150度,弧BC為70度,求ABD、 APD的度數(shù) 3 3、如圖,點、如圖,點A A、B B、C C在在OO上,上,點點D D在圓在圓 外外,CDCD、BDBD分別交分別交OO于點于點E E、F F,比較,比較 BACBAC與與BDCBDC的大小,并說明理由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論