重點高中物理選修3-1磁場知識點及習(xí)題_第1頁
重點高中物理選修3-1磁場知識點及習(xí)題_第2頁
重點高中物理選修3-1磁場知識點及習(xí)題_第3頁
重點高中物理選修3-1磁場知識點及習(xí)題_第4頁
重點高中物理選修3-1磁場知識點及習(xí)題_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、精心整理一、磁場知識要點1. 磁場的產(chǎn)生磁極周圍有磁場。電流周圍有磁場(奧斯特) 。安培提出分子電流假說(又叫磁性起源假說) ,認為磁極的磁場和電流的磁場都是由電荷的運動產(chǎn)生的。(不等于說所有磁場都是由運動電荷產(chǎn)生的。 )變化的電場在周圍空間產(chǎn)生磁場(麥克斯韋)。2. 磁場的基本性質(zhì)磁場對放入其中的磁極和電流有磁場力的作用( 對磁極一定有力的作用;對電流只是可能有力的作用,當電流和磁感線平行時不受磁場力作用 ) 。這一點應(yīng)該跟電場的基本性質(zhì)相比較。3. 磁感應(yīng)強度bfl 很小,并且 l b)。(條件是勻強磁場中,或ilt, 1t=1n/(a m)=1kg/(a s2)磁感應(yīng)強度是矢量。單位是特

2、斯拉,符號為4. 磁感線用來形象地描述磁場中各點的磁場方向和強弱的曲線。磁感線上每一點的切線方向就是該點的磁場方向,也就是在該點小磁針靜止時 n極的指向。磁感線的疏密表示磁場的強弱。磁感線是封閉曲線(和靜電場的電場線不同)。要熟記常見的幾種磁場的磁感線:安培定則(右手螺旋定則):對直導(dǎo)線,四指指磁感線方向;對環(huán)行電流,大拇指指中心軸線上的磁感線方向;對長直螺線管大拇指指螺線管內(nèi)部的磁感線方向。5. 磁通量如果在磁感應(yīng)強度為b的勻強磁場中有一個與磁場方向垂直的平面,其面積為 ,則定義b與s的乘積為穿過這個面的磁通量,s用 表示。 是標量,但是有方向(進該面或出該面)。單位為韋伯,符號為 wb。

3、1wb=1t2s=1kg22) 。m=1vm/(as可以認為磁通量就是穿過某個面的磁感線條數(shù)。在勻強磁場磁感線垂直于平面的情況下,=/,所以磁感應(yīng)強度又叫磁通密度。在勻強磁場中,當b與s的夾角為時,有bs=sin。bs精心整理地球磁場通電直導(dǎo)線周圍磁場通電環(huán)行導(dǎo)線周圍磁場精心整理二、安培力(磁場對電流的作用力)知識要點1. 安培力方向的判定用左手定則。用“同性相斥,異性相吸” (只適用于磁鐵之間或磁體位于螺線管外部時)。用“同向電流相吸,反向電流相斥” (反映了磁現(xiàn)象的電本質(zhì)) ??梢园褩l形磁鐵等效為長直螺線管(不要把長直螺線管等效為條形磁鐵)。只要兩導(dǎo)線不是互相垂直的,都可以用 “同向電流相

4、吸,反向電流相斥” 判定相互作用的磁場力的方向;當兩導(dǎo)線互相垂直時,用左手定則判定。2. 安培力大小的計算: f=blisin (為 b、l 間的夾角)高中只要求會計算例題分析例 1:如圖所示,可以自由移動的豎直導(dǎo)線中通有向下的電流,不磁場力作用下,導(dǎo)線將如何移動?i解:先畫出導(dǎo)線所在處的磁感線,上下兩部分導(dǎo)線所受安培力的方看順時針轉(zhuǎn)動; 同時又受到豎直向上的磁場的作用而向右移動(不要說析的關(guān)鍵是畫出相關(guān)的磁感線。例 2:條形磁鐵放在粗糙水平面上, 正中的正上方有一導(dǎo)線,磁鐵對水平面的壓力將會 ( 增大、減小還是不變? ) 。水平面f=0(不受安培力)和=90兩種情況。s計通電導(dǎo)線的重力, 僅

5、在n向相反,使導(dǎo)線從左向右成先轉(zhuǎn) 90后平移)。分通有圖示方向的電流后,/對磁鐵的摩擦力大小為ff。解:本題有多種分析方法。 畫出通電導(dǎo)線中電流的磁場中fs通過兩極的那條磁感線(如圖中粗虛線所示) ,可看出兩極受的磁場力的合力豎直向上。磁鐵對水平面的壓力減小,但不受摩擦力。 畫出條形磁鐵的磁感線中通過通電導(dǎo)線的那一條(如圖中細虛線所示),可看出導(dǎo)線受到的安培力豎直向下,因此條形磁鐵受的反作用力豎直向上。把條形磁鐵等效為通電螺線管,上方的電流是向里的,與通電導(dǎo)線中的電流是同向電流,所以互相吸引。例 3:如圖在條形磁鐵 n 極附近懸掛一個線圈,當線圈中通有逆時針方向的電流時,線圈將向哪個方向偏轉(zhuǎn)?

6、解:用“同向電流互相吸引,反向電流互相排斥”最簡單:條形磁鐵的等sn效螺線管的電流在正面是向下的,與線圈中的電流方向相反,互相排斥,而左邊的線圈匝數(shù)多所以線圈向右偏轉(zhuǎn)。 (本題如果用“同名磁極相斥,異名磁極相吸”將出現(xiàn)判斷錯誤,因為那只適用于線圈位于磁鐵外部的情況。)例 4:電視機顯象管的偏轉(zhuǎn)線圈示意圖如右,即時電流方向如圖所示。該時刻由里向外射出的電子流將向哪個方向偏轉(zhuǎn)?解:畫出偏轉(zhuǎn)線圈內(nèi)側(cè)的電流,是左半線圈靠電子流的一側(cè)為向里,右半線圈靠電子流的一側(cè)為向外。 電子流的等效電流方向是向里的,根據(jù)“同向電流互相吸引,反向電流互相排斥”,可判i定電子流向左偏轉(zhuǎn)。 (本題用其它方法判斷也行,但不如

7、這個方法簡潔)。例5:如圖所示,光滑導(dǎo)軌與水平面成角,導(dǎo)軌寬 l。勻強磁場磁感應(yīng)強度為 b。金屬桿長也為l,質(zhì)量為 ,水平放在導(dǎo)軌上。當回路總電流為i1 時,金屬桿正好能靜止。求:b至少多m大?這時 b的方向如何?若保持 b的大小不變而將b的方向改為豎直向上,應(yīng)把回路總電流i 2 調(diào)到多大才能使金屬桿保持靜止?解:畫出金屬桿的截面圖。由三角形定則可知,只有當安培力方向沿導(dǎo)軌平面向上時安培力才最小, b 也最小。根據(jù)左手定則,這時b應(yīng)垂直于導(dǎo)軌平面向上,大小滿足:bbi 1l=mgsin , b=mgsin / i 1l。當 b 的方向改為豎直向上時,這時安培力的方向變?yōu)樗较蛴?,沿?dǎo)軌方向合力

8、為零,得bi 2lcos =mgsin , i 2 =i 1 /cos 。(在解這類題時必須畫出截面圖,只有在截面圖上才能正確表示各力的準確方向,從而弄清各矢量方向間的關(guān)系)。例 6:如圖所示,質(zhì)量為的銅棒搭在u形導(dǎo)線框右端,棒長和框?qū)捑鵥m精心整理hs為 l,磁感應(yīng)強度為b 的勻精心整理強磁場方向豎直向下。電鍵閉合后,在磁場力作用下銅棒被平拋出去,下落h后落在水平面上,水平位移為。求閉合電鍵后通過s銅棒的電荷量。q解:閉合電鍵后的極短時間內(nèi),銅棒受安培力向右的沖量=0 而被平拋出去,其中= ,而瞬時電流和時間的乘積等于f t mvf bil電荷量 =t,由平拋規(guī)律可算銅棒離開導(dǎo)線框時的初速度

9、sg,最終可得msg。q iv0sq2ht2hbl三、洛倫茲力知識要點1. 洛倫茲力運動電荷在磁場中受到的磁場力叫洛倫茲力,它是安培力的微觀表現(xiàn)。計算公式的推導(dǎo): 如圖所示,整個導(dǎo)線受到的磁場力 (安培力)為 f安=bil;其中 i=nesv ;設(shè)導(dǎo)線中共有n個自由電子;每個電子受的磁場力為,則f安 =。由以上四式fn=nslfnf可得。條件是v與b垂直。當v與b成角時,sin。f=qvbf=qvb2. 洛倫茲力方向的判定在用左手定則時,四指必須指電流方向(不是速度方向),即正電荷定向移動的方向;對負電荷,四指應(yīng)指負電荷定向移動方向的反方向。3. 洛倫茲力大小的計算帶電粒子在勻強磁場中僅受洛倫

10、茲力而做勻速圓周運動時,洛倫茲力充當向心力,由此可以推導(dǎo)出該圓v lyv周運動的半徑公式和周期公式:rmv , t2 mrbqbqb4. 帶電粒子在勻強磁場中的偏轉(zhuǎn)穿過矩形磁場區(qū)。一定要先畫好輔助線(半徑、速度及延長線)。偏轉(zhuǎn)角由 sin= /求出。側(cè)移l r由 r2=l2-( r-y) 2解出。經(jīng)歷時間由 tm得出。rvobq注意,這里射出速度的反向延長線與初速度延長線的交點不再是寬度線段的中點,這點與帶電粒子rv在勻強電場中的偏轉(zhuǎn)結(jié)論不同!穿過圓形磁場區(qū)。畫好輔助線(半徑、速度、軌跡圓的圓心、連心線)。偏角可由 tanr 求出。/2ro經(jīng)歷時間由 tm得出。bq注意:由對稱性,射出線的反向

11、延長線必過磁場圓的圓心。例題分析例 1:磁流體發(fā)電機原理圖如右。等離子體高速從左向右噴射,兩極板間有如圖方向的勻強磁場。該發(fā)電機哪個極板為正極?兩板間最大電壓為多少?+解:由左手定則,正、負離子受的洛倫茲力分別向上、向下。所以上極板為正。正、負極板br間會產(chǎn)生電場。當剛進入的正負離子受的洛倫茲力與電場力等值反向時,達到最大電壓:。u=bdv當外電路斷開時,這也就是電動勢e。當外電路接通時,極板上的電荷量減小,板間場強減小,洛倫茲力將大于電場力,進入的正負離子又將發(fā)生偏轉(zhuǎn)。這時電動勢仍是e=bdv,但路端電壓將小于 bdv。在定性分析時特別需要注意的是:正負離子速度方向相同時,在同一磁場中受洛倫

12、茲力方向相反。外電路接通時,電路中有電流,洛倫茲力大于電場力,兩板間電壓將小于bdv,但電動勢不變(和所有電源一樣,電動勢是電源本身的性質(zhì)。 )注意在帶電粒子偏轉(zhuǎn)聚集在極板上以后新產(chǎn)生的電場的分析。在外電路斷開時最終將達到平衡態(tài)。例 3:如圖直線上方有磁感應(yīng)強度為b的勻強磁場。正、負電子同時從同一點o以與mnmn精心整理mn精心整理成 30角的同樣速度v 射入磁場(電子質(zhì)量為m,電荷為 e),它們從磁場中射出時相距多遠?射出的時間差是多少?例 4:一個質(zhì)量為電荷量為q的帶電粒子從x軸上的( ,0) 點以速度v,沿與x正方向成 60的方mp a向射入第一象限內(nèi)的勻強磁場中,并恰好垂直于 y 軸射

13、出第一象限。求勻強點的坐標。/解 : 由 射 入 、 射 出 點 的 半 徑 可 找 到 圓 心o, 并 得 出 半 徑 為yvb磁場的磁感應(yīng)強度b 和射出2amv3mv ;射出點坐標為(0,3a)。r,得b2aqo/3bqv四、帶電粒子在混合場中的運動知識要點1. 速度選擇器oax正交的勻強磁場和勻強電場組成速度選擇器。帶電粒子必須以唯一確定的速度(包括大小、方向)才能勻速(或者說沿直線)通過速度選擇器。否則將發(fā)生偏轉(zhuǎn)。這個速度的大小可以由洛倫茲力和電場力的 平 衡 得 出 :,e。在本圖中,速度方向必須向右。qvb=eqvbv這個結(jié)論與離子帶何種電荷、電荷多少都無關(guān)。若速度小于這一速度,電

14、場力將大于洛倫茲力,帶電粒子向電場力方功,動能將增大, 洛倫茲力也將增大, 粒子的軌跡既不是拋物線,也不是圓,大于這一速度,將向洛倫茲力方向偏轉(zhuǎn),電場力將做負功,動能將減小,洛是一條復(fù)雜曲線。2. 帶電微粒在重力、電場力、磁場力共同作用下的運動帶電微粒在三個場共同作用下做勻速圓周運動。必然是電場力和重力平衡,而洛倫茲力充當向心力。向偏 轉(zhuǎn),電 場力做正而是一條復(fù)雜曲線;若倫茲力也將減小,軌跡與力學(xué)緊密結(jié)合的綜合題,要認真分析受力情況和運動情況(包括速度和加速度)。必要時加以討論。例題分析例 1:某帶電粒子從圖中速度選擇器左端由中點o以速度 v0 向右射c的b點以速度v1 射出;若增大磁感應(yīng)強度

15、,該粒子將打到a點上方的cbv0a粒子帶 _電;第二次射出時的速度為_。o解: b 增大后向上偏, 說明洛倫茲力向上, 所以為帶正電。 由于洛倫b次都是只有電場力做功,第一次為正功,第二次為負功,但功的絕對值1 mv21 mv21 mv21 mv 2 , v22v2v22120020122去,從右端中心 a 下方點,且有 ac=ab,則該茲力總不做功, 所以兩相同。例 2:如圖所示,一個帶電粒子兩次以同樣的垂直于場線的初速度v0 分別穿越勻強電場區(qū)和勻強磁場區(qū),場區(qū)的寬度均為l 偏轉(zhuǎn)角度均為 ,求 e b解 : 分 別 利 用 帶 電 粒 子 的 偏 角 公 式 。 在 電 場 中 偏 轉(zhuǎn) :

16、中偏轉(zhuǎn): sinlbq ,由以上兩式可得 ev0??梢宰C明:當mv0bcos然不同(電場中側(cè)移較大);當側(cè)移相同時,偏轉(zhuǎn)角必然不同(磁場例 3:一個帶電微粒在圖示的正交勻強電場和勻強磁場中在豎直則該帶電微粒必然帶 _,旋轉(zhuǎn)方向為 _。若已知圓半徑為 r ,度為 b,則線速度為 _。ltaneql ,在磁場2mv0v0偏轉(zhuǎn)角相同時,側(cè)移必be中偏轉(zhuǎn)角較大)。面內(nèi)做勻速圓周運動。電場強度為 e 磁感應(yīng)強解:因為必須有電場力與重力平衡,所以必為負電;由左手定則得逆時針轉(zhuǎn)動;再由eq mg和rmv 得 vbrgbqe例 4:質(zhì)量為 m帶電量為 q 的小球套在豎直放置的絕緣桿上,球與桿間的動摩擦因數(shù)為

17、。勻強電場和勻強磁場的方向如圖所示,電場強度為,磁感應(yīng)強度為。小球由靜止釋放后沿桿下滑。設(shè)桿足夠長,電場和磁場也足eb精心整理精心整理夠大,求運動過程中小球的最大加速度和最大速度。解:不妨假設(shè)設(shè)小球帶正電(帶負電時電場力和洛倫茲力都將反向,結(jié)論相同)。剛釋放時小球受重力、電場力、彈力、摩擦力作用,向下加速;開始運動后又受到洛倫茲力作用,彈力、摩擦力開始減?。划斅鍌惼澚Φ扔陔妶隽r加速度最大為g。隨著 v的增大,洛倫茲力大于電場力,彈力方向變?yōu)橄蛴遥也粩嘣龃?,摩擦力隨著增大,加速度減小,當摩擦力和重力大小相等時,小球速度達到最大 vmge 。ffbqbneqqvbeqn若將磁場的方向反向,而其

18、他因素都不變,則開始運動后洛倫茲力向右,彈力、摩擦力不斷增大,加速度減小。所以開始的加速度最大為mg vamg vma geq ;摩擦力m等于重力時速度最大,為 vmge 。bqb5.(20 分) 如圖所示為一種質(zhì)譜儀示意圖,由加速電場、靜電分析器和磁分析器組成。已知:靜電分析器通道的半徑為r,均勻輻射電場的場強為e。磁分析器中有垂直紙面向外的勻強磁場,磁感強度為b。問:( 1)為了使位于a 處電量為q、質(zhì)量為m 的離子,從靜止開始經(jīng)加速電場加速后沿圖中圓弧虛線通過靜電分析器,加速電場的電壓u 應(yīng)為多大?( 2)離子由 p 點進入磁分析器后,最終打在乳膠片上的q 點,該點距入射點p 多遠?解:

19、( 1)離子在加速電場中加速,根據(jù)動能定理有 (3 分 )離子在輻向電場中做勻速圓周運動,電場力提供向心力,有 (4 分)解得 (2 分)( 2)離子在勻強磁場中做勻速圓周運動,洛倫茲力提供向心力,有 (3 分)由、式得(5 分)故 (3 分 )例 6:(20 分)如圖所示,固定在水平桌面上的光滑金屬框架cdef 處于豎直向下磁感應(yīng)強度為b0 的勻強磁場中。金屬桿ab與金屬框架接觸良好。此時abed 構(gòu)成一個邊長為l 的正方形,金屬桿的電阻為r,其余部分電阻不計。若從 t=0 時刻起,磁場的磁感應(yīng)強度均勻增加,每秒鐘增量為k,施加一水平拉力保持金屬桿靜止不動,求金屬桿中的感應(yīng)電流。在情況中金屬

20、桿始終保持不動,當t=t1 秒末時,求水平拉力的大小。精心整理精心整理若從 t=0 時刻起,磁感應(yīng)強度逐漸減小,當金屬桿在框架上以恒定速度v 向右做勻速運動時,可使回路中不產(chǎn)生感應(yīng)電流。寫出磁感應(yīng)強度b 與時間 t 的函數(shù)關(guān)系式。解 (1)設(shè)瞬時磁感應(yīng)強度為b,由題意得(分)產(chǎn)生感應(yīng)電動勢為(分)根據(jù)閉合電路歐姆定律得,產(chǎn)生的感應(yīng)電流(分)()由題意,根據(jù)二力平衡,安培力等于水平拉力,即(分)(分)由得,所以(分)()回路中電流為,說明磁感應(yīng)強度逐漸減小產(chǎn)生的感應(yīng)電動勢和金屬桿運動產(chǎn)生的感應(yīng)電動勢相反,即,則有(分)解得(分)例 7(19 分 )如圖,在 x 軸上方有磁感強度大小為b,方向垂直

21、紙面向里的勻強磁場。x 軸下方有磁感強度大小為b/2,方向垂直紙面向外的勻強磁場。一質(zhì)量為m、電量為 q 的帶電粒子(不計重力),從x 軸上 o 點以速度v0 垂直 x 軸向上射出。求:(1)經(jīng)多長時間粒子第三次到達x 軸。 (初位置 o 點為第一次 ) (2)粒子第三次到達x 軸時離 o 點的距離。解:精心整理精心整理( 1)粒子運動軌跡示意圖如右圖( 2 分)由牛頓第二定律( 4 分)( 2 分)得 t1=( 2 分)t2=( 2 分)粒子第三次到達 x 軸需時間 t=(1 分)( 2)由式可知 r1=( 2 分)r2=(2 分)粒子第三次到達 x 軸時離 o 點的距離 s=2r12r2=

22、(2 分)例 8、如圖所示,在第i 象限范圍內(nèi)有垂直xoy 平面的勻強磁場,磁感應(yīng)強度為b。質(zhì)量為m、電量大小為q 的帶電粒子(不計重力),在axy 平面里經(jīng)原點o 射入磁場中,初速度為v0,且與 x 軸成 60角,試分析計算:精心整理精心整理( 1)帶電粒子從何處離開磁場?穿越磁場時運動方向發(fā)生的偏轉(zhuǎn)角多大?( 2)帶電粒子在磁場中運動時間多長?解:帶電粒子若帶負電荷,進入磁場后將向x 軸偏轉(zhuǎn),從a 點離開磁場;若帶正電荷,進入磁場后將向y 軸偏轉(zhuǎn),從b 點離開磁場; 如圖所示 帶電粒子進入磁場后作勻速圓周運動,軌跡半徑均為圓心位于過o 點與 v0 垂直的同一條直線上,o1o o2oo1ao

23、2b r,帶電粒子沿半徑為r 的圓周運動一周的時間為()粒子若帶負電荷,進入磁場后將向 x 軸偏轉(zhuǎn),從 a 點離開磁場,運動方向發(fā)生的偏角為:1 22600 1200。a 點到原點 o 的距離為:粒子若帶正電荷,進入磁場后將向y 軸偏轉(zhuǎn),在b 點離開磁場;運動方向發(fā)生的偏角為:22(900 ) 2300 600。b 點到原點 o 的距離為:()粒子若帶負電荷,進入磁場后將向x 軸偏轉(zhuǎn),從a 點離開磁場,運動的時間為:粒子若帶正電荷,進入磁場后將向y 軸偏轉(zhuǎn),在b 點離開磁場;運動的時間為:例 9、右圖是科學(xué)史上一張著名的實驗照片,顯示一個帶電粒子在云室中穿過某種金屬板運動的徑跡。云室旋轉(zhuǎn)在勻強

24、磁場中,磁場方向垂直照片向里。云室中橫放的金屬板對粒子的運動起阻礙作用。分析此徑跡可知粒子a. 帶正電,由下往上運動b. 帶正電,由上往下運動c. 帶負電,由上往下運動d. 帶負電,由下往上運動答案: a。精心整理精心整理解析:粒子穿過金屬板后,速度變小,由半徑公式指向圓心,由左手定則,粒子帶正電。選a。mvr可知,半徑變小,粒子運動方向為由下向上;又由于洛侖茲力的方向qb例 10、如圖所示,固定位置在同一水平面內(nèi)的兩根平行長直金屬導(dǎo)軌的間距為d,其右端接有阻值為r 的電阻,整個裝置處在豎直向上磁感應(yīng)強度大小為b 的勻強磁場中。一質(zhì)量為m(質(zhì)量分布均勻)的導(dǎo)體桿ab 垂直于導(dǎo)軌放置,且與兩導(dǎo)軌

25、保持良好接觸,桿與導(dǎo)軌之間的動摩擦因數(shù)為u?,F(xiàn)桿在水平向左、垂直于桿的恒力f 作用下從靜止開始沿導(dǎo)軌運動距離l 時,速度恰好達到最大(運動過程中桿始終與導(dǎo)軌保持垂直)。設(shè)桿接入電路的電阻為r ,導(dǎo)軌電阻不計,重力加速度大小為g。則此過程a. 桿的速度最大值為b. 流過電阻 r 的電量為c. 恒力 f 做的功與摩擦力做的功之和等于桿動能的變化量d. 恒力 f 做的功與安倍力做的功之和大于桿動能的變化量答案 bd【 解 析 】 當 桿 達 到 最 大 速 度 vm 時 ,b 2d 2vm0 得fmg rr錯 ; 由 公 式fmgr rvmb2 d 2, aqb sbdl ,b 對;在棒從開始到達到

26、最大速度的過程中由動能定理有:wfw f w安ek ,其中rrr rr rw fmg ,w安q ,恒力 f 做的功與摩擦力做的功之和等于桿動能的變化量與回路產(chǎn)生的焦耳熱之和,c 錯;恒力 f 做的功與安倍力做的功之和等于于桿動能的變化量與克服摩擦力做的功之和,例 11、如圖甲, 在水平地面上固定一傾角為的光滑絕緣斜面,斜面e、方向沿斜面向下的勻強電場中。一勁度系數(shù)為k 的絕緣輕質(zhì)彈簧端,整根彈簧處于自然狀態(tài)。一質(zhì)量為m、帶電量為q(q0)的滑塊處靜止釋放,滑塊在運動過程中電量保持不變,設(shè)滑塊與彈簧接觸過簧始終處在彈性限度內(nèi),重力加速度大小為g。( 1)求滑塊從靜止釋放到與彈簧上端接觸瞬間所經(jīng)歷

27、的時間t 1( 2)若滑塊在沿斜面向下運動的整個過程中最大速度大小為v m,速度大小為v m過程中彈簧的彈力所做的功w;( 3)從滑塊靜止釋放瞬間開始計時,請在乙圖中畫出滑塊在沿過程中速度與時間關(guān)系v-t圖象。圖中橫坐標軸上的t 1、 t 2 及 t 3 分別簧上端接觸、第一次速度達到最大值及第一次速度減為零的時刻,縱在 t 1 時刻的速度大小, v m是題中所指的物理量。 (本小題不要求寫出計算過程d對。處于電場強度大小為的一端固定在斜面底從距離彈簧上端為s 0程沒有機械能損失, 彈求滑塊從靜止釋放到斜面向下運動的整個表示滑塊第一次與彈坐標軸上的v1 為滑塊)答案( 1) t12ms0; (

28、2) w1 mvm2mg sinqe ) ;qe mg sin(mg sinqe) ? (s02k精心整理精心整理(3)【解析】本題考查的是電場中斜面上的彈簧類問題。涉及到勻變速直線運動、運用動能定理處理變力功問題、最大速度問題和運動過程分析。( 1)滑塊從靜止釋放到與彈簧剛接觸的過程中作初速度為零的勻加速直線運動,設(shè)加速度大小為a,則有qe+mgsin=mas01 at122聯(lián)立可得t12ms0qemg sin( 2)滑塊速度最大時受力平衡,設(shè)此時彈簧壓縮量為x0 ,則有mg sinqekx0 從靜止釋放到速度達到最大的過程中,由動能定理得(mg sinqe ) ?( xmx0 ) w1 m

29、vm202聯(lián)立可得w1 mvm2(mg sinqe ) ? ( s0mg sinqe ) s2k( 3)如圖例 12、圖為可測定比荷的某裝置的簡化示意圖,在第一象限區(qū)域內(nèi)有垂直于紙面向里的勻強磁場,磁感應(yīng)強度大小b=2. 010-3 t,在 x 軸上距坐標原點l=0.50m 的 p 處為離子的入射口,在y 上安放接收器,現(xiàn)將一帶正電荷的粒子以v=3.5 104m/s 的速率從 p 處射入磁場,若粒子在y 軸上距坐標原點 l=0.50m 的 m處被觀測到,且運動軌跡半徑恰好最小,設(shè)帶電粒子的質(zhì)量為m,電量為 q, 不記其重力。( 1)求上述粒子的比荷q ;m( 2)如果在上述粒子運動過程中的某個

30、時刻,在第一象限內(nèi)再加一個勻強電場,就可以使其沿y 軸正方向做勻速直線運動,求該勻強電場的場強大小和方向,并求出從粒子射入磁場開始計時經(jīng)過多長時間加這個勻強電場;( 3)為了在m 處觀測到按題設(shè)條件運動的上述粒子,在第一象限內(nèi)的磁場可以局限在一個矩形區(qū)域內(nèi),求此矩形磁場區(qū)域的最小面積,并在圖中畫出該矩形。精心整理精心整理答案( 1) q =4.9 107 c/kg (或 5.0 107 c/kg );(2) t7.910 6 s ;(3) s0.25m2m【解析】本題考查帶電粒子在磁場中的運動。第(2)問涉及到復(fù)合場(速度選擇器模型)第(3)問是帶電粒子在有界磁場(矩形區(qū)域)中的運動。( 1)

31、設(shè)粒子在磁場中的運動半徑為r 。如圖甲,依題意m、p連線即為該粒子在磁場中作勻速圓周運動的直徑,由幾何關(guān)系得r2l2由洛倫茲力提供粒子在磁場中作勻速圓周運動的向心力,可得qvbv2m r聯(lián)立并代入數(shù)據(jù)得q =4.9 107 c/kg (或 5.0 107 c/kg )m( 2)設(shè)所加電場的場強大小為。如圖乙,當粒子子經(jīng)過q點時,速度沿y軸正方向,依題意,在此時加入沿x軸正方向的勻e強電場,電場力與此時洛倫茲力平衡,則有qeqvb 代入數(shù)據(jù)得e70n / c 所加電場的長槍方向沿x軸正方向。 由幾何關(guān)系可知, 圓弧所對應(yīng)的圓心角為45,設(shè)帶點粒子做勻速圓周運動的周期為,pqt所求時間為t ,則有

32、0t45 0 t 360t2 rv聯(lián)立并代入數(shù)據(jù)得t7.9 10 6 s ( 3)如圖丙,所求的最小矩形是mm 1p1p ,該區(qū)域面積s2r 2 聯(lián)立并代入數(shù)據(jù)得矩形如圖丙中 mm 1p1 p (虛線)例 13、如圖,在 x 軸下方有勻強磁場,磁感應(yīng)強度大小為 b,方向垂直于xy 平面向外。 p 是 y 軸上距原點為h 的一點, n 為 x 軸上距原點為 a 的一點。 a0是一塊平行于x 軸的擋板,與x 軸的距離為,a 的中點在 y軸上,長度略小于精心整理精心整理。 點粒子與 板碰撞前后,x 方向的分速度不 ,y 方向的分速度反向、大小不 。 量 m, 荷量 q( q0)的粒子從 p點瞄準 n

33、0 點入射,最后又通 p 點。不 重力。求粒子入射速度的所有可能 。26. 【解析】 粒子的入射速度 v, 第一次射出磁 的點 no, 與板碰撞后再次 入磁 的位置 n1 . 粒子在磁 中運 的 道半徑 r,有 rmv , 粒子速率不 , 每次 入磁 與射出磁 位置 距離x1 保持不 有 x1 no n o2rsin ,qb粒子射出磁 與下一次 入磁 位置 的距離x2 始 不 , 與 n o n1 相等 . 由 可以看出 x2a 粒子最 離開磁 , 與檔板相碰 n 次 (n=0 、1、2、 3). 若粒子能回到p 點, 由 稱性 ,出射點的 x 坐 -a,即 n1 x1nx22a , 由兩式得x1n2 a n1a若粒子與 板 生碰撞, 有 x1x2n3 立得 聯(lián) 立 4得vqbn2 a 把 sinh代入中得2m sinn1a 2h 2voqbaa 2h2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論