版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、基本不等式求最值3.43.4基本不等式基本不等式基本不等式求最值基本不等式求最值一、知識梳理一、知識梳理1.重要的不等式重要的不等式重要不重要不等式等式 應(yīng)用應(yīng)用條件條件 “”何何時(shí)取得時(shí)取得 作用作用 變形變形 abba2rba,ba 積和22baababba222rba,ba 積平方和222baab一.知識梳理基本不等式求最值2、已知、已知 都是正數(shù),都是正數(shù),(1)如果積)如果積 是定值是定值p,那么當(dāng),那么當(dāng) 時(shí),時(shí),和和 有最小值有最小值(2)如果和)如果和 是定值是定值s,那么當(dāng),那么當(dāng) 時(shí),時(shí),積積 有最大值有最大值xyyx yx,yxp2yxyx xy241s基本不等式求最值講
2、授新課:講授新課:一、配湊法求最值基本不等式求最值講授新課:講授新課:一、配湊法求最值的最值,求是正數(shù)且:例abbaba4,1的最值,求是正數(shù)且:變形abbaba42,1424222 baab解:當(dāng)且僅當(dāng)a=b=2時(shí)等號成立所以ab的最大值為422121221242222babaab解:當(dāng)且僅當(dāng)2a=b時(shí)等號成立,即a=1,b=2時(shí)ab的最大值為2例例1基本不等式求最值的最值,求是正數(shù)且:變形abbaba42,282222242222babaab當(dāng)且僅當(dāng)a= 時(shí)等號成立,即a=2,b=4時(shí),ab的最大值為8.2b解:基本不等式求最值已知a0,b0,且bbaa2221, 12求的最大值。變式3:
3、基本不等式求最值基本不等式求最值題型二:拆項(xiàng)法求函數(shù)的最值2axbxcymxn二 類型函數(shù)求最值基本不等式求最值例例3基本不等式求最值類型三 :含兩個(gè)變量的最值問題基本不等式求最值類型三 :含兩個(gè)變量的最值問題基本不等式求最值例例5 (1)已知已知 且且 ,求,求 的最小值的最小值.(2)已知正數(shù))已知正數(shù) 滿足滿足 ,求,求 的的最小值最小值.,0 x y 1xy, x y112xy2xyyx12(1)原式=)(12(yxyxxyyx23223(2) )11)(2(212yxyxyx)23(21yxxy223基本不等式求最值的最小值,求)已知(yxyxyx1112, 0, 02. 22311
4、2211222231122222, 0, 0221221112的最小值為時(shí)等號成立。且即當(dāng)且僅當(dāng)解:yxyxyxxyyxyxxyyxxyyxyxxyyyxxyxyxyx類型三 :含兩個(gè)變量的最值問題基本不等式求最值例5、當(dāng)0 x0,b0)2abab基本不等式求最值3. 利用基本不等式求最值時(shí),如果無定值,要先配、湊出利用基本不等式求最值時(shí),如果無定值,要先配、湊出定值,再利用基本不等式求解。定值,再利用基本不等式求解?;静坏仁角笞钪?、 (1)a,b都是正數(shù)且都是正數(shù)且2ab2,求求a(1b)的最值和此時(shí)的最值和此時(shí)a、b的值的值.)21(, 22,222的的最最值值是是是是正正數(shù)數(shù)bababa (2)作業(yè):基本不等式求最值作業(yè):作業(yè):19,1,x yrxyxy若且求的最小值。(4)基本不等式求最值作業(yè):3、(1)若x3,求函數(shù) 的最小值31xxy) 1(113)(2xxxxxf(3)求函數(shù))求函數(shù) 的最小值的最小值. 24)(, 22)4(baxfbaba和此時(shí)的的最值及求已知基本不等式求最值,0,x yrxyxyxy若且2求的最小值。4、作業(yè)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《汽車結(jié)構(gòu)認(rèn)識》課件
- 單位管理制度合并選集【職員管理】十篇
- 單位管理制度范例選集職工管理十篇
- 單位管理制度呈現(xiàn)合集職工管理十篇
- 單位管理制度呈現(xiàn)大合集員工管理
- 《店鋪運(yùn)營管理》課件
- 《生藥分析1》課程實(shí)施大綱
- 某科技園物業(yè)管理方案
- 2024年供電公司安全稽查總結(jié)
- 《小升初語法名詞》課件
- 錨桿框格梁施工技術(shù)交底
- 深圳分區(qū)地圖可移動(dòng)編輯
- 2023年新版烏斯特統(tǒng)計(jì)公報(bào)即將發(fā)布
- 污水處理廠安全生產(chǎn)風(fēng)險(xiǎn)分級管控體系方案全套資料匯編完整版
- 人教部編版三年級語文上冊古詩詞日積月累默寫模板
- 高危急性胸痛的快速診斷和誤診病案分析
- (完整版)綜合醫(yī)院康復(fù)醫(yī)學(xué)科建設(shè)與管理指南
- GB/T 41649-2022木制玩具中甲醛釋放量的測定燒瓶法
- JJF 1384-2012開口/閉口閃點(diǎn)測定儀校準(zhǔn)規(guī)范
- GB/T 33720-2017LED照明產(chǎn)品光通量衰減加速試驗(yàn)方法
- 教師政治紀(jì)律方面存在的問題及整改措施集合5篇 教師政治紀(jì)律方面存在的問題及整改措施怎么寫
評論
0/150
提交評論