版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、.經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CDAB,EFAB,EGCO求證:CDGF(初二)AFGCEBODAPCDB第1題圖第2題圖2、已知:如圖,P是正方形ABCD內(nèi)點,PADPDA150 求證:PBC是正三角形(初二)3、如圖,已知四邊形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分別是AA1、BB1、CC1、DD1的中點求證:四邊形A2B2C2D2是正方形(初二)D2C2B2A2D1C1B1CBDAA1ANFECDMB第3題圖第4題圖4、已知:如圖,在四邊形ABCD中,ADBC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F求證
2、:DENF經(jīng)典難題(二)1、已知:ABC中,H為垂心(各邊高線的交點),O為外心,且OMBC于M(1)求證:AH2OM;(2)若BAC600,求證:AHAO(初二)·ADHEMCBO·GAODBECQPNM第1題圖第2題圖2、設(shè)MN是圓O外一直線,過O作OAMN于A,自A引圓的兩條直線,交圓于B、C及D、E,直線EB及CD分別交MN于P、Q求證:APAQ(初二)3、如果上題把直線MN由圓外平移至圓內(nèi),則由此可得以下命題:設(shè)MN是圓O的弦,過MN的中點A任作兩弦BC、DE,設(shè)CD、EB分別交MN于P、Q求證:APAQ(初二)·OQPBDECNM·APCGF
3、BQADE第3題圖第4題圖4、如圖,分別以ABC的AC和BC為一邊,在ABC的外側(cè)作正方形ACDE和正方形CBFG,點P是EF的中點求證:點P到邊AB的距離等于AB的一半(初二)經(jīng)典難題(三)1、如圖,四邊形ABCD為正方形,DEAC,AEAC,AE與CD相交于F求證:CECF(初二)AFDECBEDACBF第1題圖第2題圖2、如圖,四邊形ABCD為正方形,DEAC,且CECA,直線EC交DA延長線于F求證:AEAF(初二)3、設(shè)P是正方形ABCD一邊BC上的任一點,PFAP,CF平分DCE求證:PAPF(初二)DFEPCBAODBFAECP第3題圖第4題圖4、如圖,PC切圓O于C,AC為圓的
4、直徑,PEF為圓的割線,AE、AF與直線PO相交于B、D求證:ABDC,BCAD(初三)經(jīng)典難題(四)1、已知:ABC是正三角形,P是三角形內(nèi)一點,PA3,PB4,PC5求:APB的度數(shù)(初二)APCBPADCB第1題圖第2題圖2、設(shè)P是平行四邊形ABCD內(nèi)部的一點,且PBAPDA求證:PABPCB(初二)3、設(shè)ABCD為圓內(nèi)接凸四邊形,求證:AB·CDAD·BCAC·BD(初三)CBDAFPDECBA第3題圖第4題圖4、平行四邊形ABCD中,設(shè)E、F分別是BC、AB上的一點,AE與CF相交于P,且AECF求證:DPADPC(初二)經(jīng)典難題(五)1、設(shè)P是邊長為1
5、的正ABC內(nèi)任一點,LPAPBPC,求證:L2APCBACBPD第1題圖第2題圖2、P是邊長為1的正方形ABCD內(nèi)的一點,求PAPBPC的最小值EDCBA3、P為正方形ABCD內(nèi)的一點,并且PAa,PB2a,PC3a,求正方形的邊長ACBPD第3題圖第4題圖4、如圖,ABC中,ABCACB800,D、E分別是AB、AC上的點,DCA300,EBA200,求BED的度數(shù)經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CDAB,EFAB,EGCO求證:CDGF。(初二)證一:連接OE。EGCO ,EFAB,O、G、E、F四點共圓,且OE為直徑。GF=OE·sinGOF。
6、又OCD中,CD=OC·sinCOD。GOF+COD=180°, OC= OE為O半徑,CDGF。證二:連接OE,過G作GHAB于H。EGCO ,EFAB,O、G、E、F四點共圓,且OE為直徑。GEO=HFG。又EGO=FHG=Rt,GEOHFG。GF:OE=GH:OG。又GHCD,GH:CD=OG:OC,即GH:OG=CD:OC,GF:OE=CD:OC,而OE=OC,CDGF。AFGCEBODHHAFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)點,PADPDA150求證:PBC是正三角形(初二)APCDBE證明:3、如圖,已知四邊形ABCD、A1B1C1D1都是正方形
7、,A2、B2、C2、D2分別是AA1、BB1、CC1、DD1的中點求證:四邊形A2B2C2D2是正方形(初二)D2C2B2A2D1C1B1CBDAA14、已知:如圖,在四邊形ABCD中,ADBC,M、N分別是AB、CD的中點,AD、BC的延長線交MN于E、F求證:DENFANFECDMB經(jīng)典難題(二)1、已知:ABC中,H為垂心(各邊高線的交點),O為外心,且OMBC于M(1)求證:AH2OM;(2)若BAC600,求證:AHAO(初二)·ADHEMCBO2、設(shè)MN是圓O外一直線,過O作OAMN于A,自A引圓的兩條直線,交圓于B、C及D、E,直線EB及CD分別交MN于P、Q求證:AP
8、AQ(初二)·GAODBECQPNM3、如果上題把直線MN由圓外平移至圓內(nèi),則由此可得以下命題:設(shè)MN是圓O的弦,過MN的中點A任作兩弦BC、DE,設(shè)CD、EB分別交MN于P、Q求證:APAQ(初二)·OQPBDECNM·A4、如圖,分別以ABC的AC和BC為一邊,在ABC的外側(cè)作正方形ACDE和正方形CBFG,點P是EF的中點求證:點P到邊AB的距離等于AB的一半(初二)PCGFBQADE經(jīng)典難題(三)1、如圖,四邊形ABCD為正方形,DEAC,AEAC,AE與CD相交于F求證:CECF(初二)AFDECB2、如圖,四邊形ABCD為正方形,DEAC,且CECA,
9、直線EC交DA延長線于F求證:AEAF(初二)EDACBF3、設(shè)P是正方形ABCD一邊BC上的任一點,PFAP,CF平分DCED求證:PAPF(初二)FEPCBA4、如圖,PC切圓O于C,AC為圓的直徑,PEF為圓的割線,AE、AF與直線PO相交于B、D求證:ABDC,BCAD(初三)ODBFAECP經(jīng)典難題(四)1、已知:ABC是正三角形,P是三角形內(nèi)一點,PA3,PB4,PC5求:APB的度數(shù)(初二)APCB2、設(shè)P是平行四邊形ABCD內(nèi)部的一點,且PBAPDA求證:PABPCB(初二)PADCB3、設(shè)ABCD為圓內(nèi)接凸四邊形,求證:AB·CDAD·BCAC·
10、BD(初三)CBDA4、平行四邊形ABCD中,設(shè)E、F分別是BC、AB上的一點,AE與CF相交于P,且AECF求證:DPADPC(初二)FPDECBA經(jīng)典難題(五)1、設(shè)P是邊長為1的正ABC內(nèi)任一點,LPAPBPC,求證:L2APCB2、已知:P是邊長為1的正方形ABCD內(nèi)的一點,求PAPBPC的最小值A(chǔ)CBPD3、P為正方形ABCD內(nèi)的一點,并且PAa,PB2a,PC3a,求正方形的邊長ACBPD4、如圖,ABC中,ABCACB800,D、E分別是AB、AC上的點,DCA300,EBA200,求BED的度數(shù)EDCBA經(jīng)典難題(一)1.如下圖做GHAB,連接EO。由于GOFE四點共圓,所以G
11、FHOEG,即GHFOGE,可得=,又CO=EO,所以CD=GF得證。2. 如下圖做DGC使與ADP全等,可得PDG為等邊,從而可得DGCAPDCGP,得出PC=AD=DC,和DCG=PCG150所以DCP=300 ,從而得出PBC是正三角形3.如下圖連接BC1和AB1分別找其中點F,E.連接C2F與A2E并延長相交于Q點,連接EB2并延長交C2Q于H點,連接FB2并延長交A2Q于G點,由A2E=A1B1=B1C1= FB2 ,EB2=AB=BC=FC1 ,又GFQ+Q=900和GEB2+Q=900,所以GEB2=GFQ又B2FC2=A2EB2 ,可得B2FC2A2EB2 ,所以A2B2=B2
12、C2 , 又GFQ+HB2F=900和GFQ=EB2A2 ,從而可得A2B2 C2=900 ,同理可得其他邊垂直且相等,從而得出四邊形A2B2C2D2是正方形。4.如下圖連接AC并取其中點Q,連接QN和QM,所以可得QMF=F,QNM=DEN和QMN=QNM,從而得出DENF。經(jīng)典難題(二)1.(1)延長AD到F連BF,做OGAF,又F=ACB=BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)連接OB,OC,既得BOC=1200, 從而可得BOM=600, 所以可得OB=2OM=AH=AO,得證。3.作OFCD,OGBE,連
13、接OP,OA,OF,AF,OG,AG,OQ。 由于, 由此可得ADFABG,從而可得AFC=AGE。 又因為PFOA與QGOA四點共圓,可得AFC=AOP和AGE=AOQ, AOP=AOQ,從而可得AP=AQ。4.過E,C,F點分別作AB所在直線的高EG,CI,F(xiàn)H??傻肞Q=。 由EGAAIC,可得EG=AI,由BFHCBI,可得FH=BI。 從而可得PQ= = ,從而得證。經(jīng)典難題(三)1.順時針旋轉(zhuǎn)ADE,到ABG,連接CG. 由于ABG=ADE=900+450=1350 從而可得B,G,D在一條直線上,可得AGBCGB。 推出AE=AG=AC=GC,可得AGC為等邊三角形。 AGB=3
14、00,既得EAC=300,從而可得A EC=750。 又EFC=DFA=450+300=750. 可證:CE=CF。2.連接BD作CHDE,可得四邊形CGDH是正方形。由AC=CE=2GC=2CH, 可得CEH=300,所以CAE=CEA=AED=150,又FAE=900+450+150=1500,從而可知道F=150,從而得出AE=AF。3.作FGCD,F(xiàn)EBE,可以得出GFEC為正方形。 令A(yù)B=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tanBAP=tanEPF=,可得YZ=XY-X2+XZ, 即Z(Y-X)=X(Y-X) ,既得X=Z ,得出ABPPEF , 得到PAPF ,
15、得證 。經(jīng)典難題(四)1. 順時針旋轉(zhuǎn)ABP 600 ,連接PQ ,則PBQ是正三角形??傻肞QC是直角三角形。所以APB=1500 。2.作過P點平行于AD的直線,并選一點E,使AEDC,BEPC.可以得出ABP=ADP=AEP,可得:AEBP共圓(一邊所對兩角相等)。可得BAP=BEP=BCP,得證。3.在BD取一點E,使BCE=ACD,既得BECADC,可得: =,即ADBC=BEAC, 又ACB=DCE,可得ABCDEC,既得 =,即ABCD=DEAC, 由+可得: ABCD+ADBC=AC(BE+DE)= AC·BD ,得證。4.過D作AQAE ,AGCF ,由=,可得:
16、=,由AE=FC。 可得DQ=DG,可得DPADPC(角平分線逆定理)。經(jīng)典難題(五)1.(1)順時針旋轉(zhuǎn)BPC 600 ,可得PBE為等邊三角形。既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一條直線上,即如下圖:可得最小L= ; (2)過P點作BC的平行線交AB,AC與點D,F(xiàn)。 由于APD>ATP=ADP,推出AD>AP 又BP+DP>BP 和PF+FC>PC 又DF=AF 由可得:最大L< 2 ; 由(1)和(2)既得:L2 。 2.順時針旋轉(zhuǎn)BPC 600 ,可得PBE為等邊三角形。既得PA+PB+PC=AP+PE+EF要使最小只要
17、AP,PE,EF在一條直線上,即如下圖:可得最小PA+PB+PC=AF。既得AF= = = = = = 。3.順時針旋轉(zhuǎn)ABP 900 ,可得如下圖: 既得正方形邊長L = = 。4.在AB上找一點F,使BCF=600 , 連接EF,DG,既得BGC為等邊三角形, 可得DCF=100 , FCE=200 ,推出ABEACF , 得到BE=CF , FG=GE 。 推出 : FGE為等邊三角形 ,可得AFE=800 , 既得:DFG=400 又BD=BC=BG ,既得BGD=800 ,既得DGF=400 推得:DF=DG ,得到:DFEDGE , 從而推得:FED=BED=300 。經(jīng)典難題(一
18、)1.如下圖做GHAB,連接EO。由于GOFE四點共圓,所以GFHOEG,即GHFOGE,可得=,又CO=EO,所以CD=GF得證。2. 如下圖做DGC使與ADP全等,可得PDG為等邊,從而可得DGCAPDCGP,得出PC=AD=DC,和DCG=PCG150所以DCP=300 ,從而得出PBC是正三角形3.如下圖連接BC1和AB1分別找其中點F,E.連接C2F與A2E并延長相交于Q點,連接EB2并延長交C2Q于H點,連接FB2并延長交A2Q于G點,由A2E=A1B1=B1C1= FB2 ,EB2=AB=BC=FC1 ,又GFQ+Q=900和GEB2+Q=900,所以GEB2=GFQ又B2FC2
19、=A2EB2 ,可得B2FC2A2EB2 ,所以A2B2=B2C2 , 又GFQ+HB2F=900和GFQ=EB2A2 ,從而可得A2B2 C2=900 ,同理可得其他邊垂直且相等,從而得出四邊形A2B2C2D2是正方形。4.如下圖連接AC并取其中點Q,連接QN和QM,所以可得QMF=F,QNM=DEN和QMN=QNM,從而得出DENF。經(jīng)典難題(二)1.(1)延長AD到F連BF,做OGAF,又F=ACB=BHD,可得BH=BF,從而可得HD=DF,又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM(2)連接OB,OC,既得BOC=1200, 從而可得BOM=600, 所以可
20、得OB=2OM=AH=AO,得證。3.作OFCD,OGBE,連接OP,OA,OF,AF,OG,AG,OQ。 由于, 由此可得ADFABG,從而可得AFC=AGE。 又因為PFOA與QGOA四點共圓,可得AFC=AOP和AGE=AOQ, AOP=AOQ,從而可得AP=AQ。4.過E,C,F點分別作AB所在直線的高EG,CI,F(xiàn)H??傻肞Q=。 由EGAAIC,可得EG=AI,由BFHCBI,可得FH=BI。 從而可得PQ= = ,從而得證。經(jīng)典難題(三)1.順時針旋轉(zhuǎn)ADE,到ABG,連接CG. 由于ABG=ADE=900+450=1350 從而可得B,G,D在一條直線上,可得AGBCGB。 推
21、出AE=AG=AC=GC,可得AGC為等邊三角形。 AGB=300,既得EAC=300,從而可得A EC=750。 又EFC=DFA=450+300=750. 可證:CE=CF。2.連接BD作CHDE,可得四邊形CGDH是正方形。由AC=CE=2GC=2CH, 可得CEH=300,所以CAE=CEA=AED=150,又FAE=900+450+150=1500,從而可知道F=150,從而得出AE=AF。3.作FGCD,F(xiàn)EBE,可以得出GFEC為正方形。 令A(yù)B=Y ,BP=X ,CE=Z ,可得PC=Y-X 。 tanBAP=tanEPF=,可得YZ=XY-X2+XZ, 即Z(Y-X)=X(Y-X) ,既得X=Z ,得出ABPPEF , 得到PAPF ,得證 。經(jīng)典難題(四)2. 順時針旋轉(zhuǎn)ABP 600 ,連接PQ ,則PBQ是正三角形??傻肞QC是直角三角形。所以APB=1500 。2.作過P點平行于AD的直線,并選一點E,使AEDC,BEPC.可以得出ABP=ADP=AEP,可得:AEBP共圓(一邊所對兩角相等)??傻肂AP=BEP=BCP,得證。3.在BD取一點E,使BCE=ACD,既
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣告合同協(xié)議書:雜志廣告合同范本
- 吉林省落葉松木材購銷合同
- 親子活動安全承諾書
- 業(yè)主提案提交指南
- 意外事故賠償協(xié)議書標準范本
- 護坡施工合同書格式
- 土地租賃合同補充協(xié)議的簽訂注意事項
- 住宅建筑工程合同樣本
- 2024三人股權(quán)合作協(xié)議書
- 簡單版房屋租賃合同撰寫心得
- 【音樂】黑土傳情-《東北風》課件 2023-2024學年人音版初中音樂九年級下冊
- 電氣三級安全教育
- 防高空墜落主題班會課件
- 《左傳》完整版本
- 2023年蘇州城市學院招聘考試真題
- 應(yīng)用化工技術(shù)職業(yè)生涯規(guī)劃
- 環(huán)境設(shè)計生涯發(fā)展展示
- 建設(shè)有特色的學校課程體系課件
- 2023-2024學年成都市石室聯(lián)合中學八年級上英語期末考試題
- 淘寶品牌授權(quán)書
- 《有機化學》課程教案
評論
0/150
提交評論