(簡單的線性規(guī)劃問題)說課稿_第1頁
(簡單的線性規(guī)劃問題)說課稿_第2頁
(簡單的線性規(guī)劃問題)說課稿_第3頁
(簡單的線性規(guī)劃問題)說課稿_第4頁
(簡單的線性規(guī)劃問題)說課稿_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、學(xué)習(xí)必備歡迎下載說課稿課題:簡單的線性規(guī)劃問題 第一課時選自:普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)(必修五)學(xué)校:西吉中蒙彥強課題:簡單的線性規(guī)劃問題尊敬的各位專家、各位評委下午好:我是來自西吉中學(xué)的數(shù)學(xué)老師蒙彥強, 今天我說課的課題是簡單的線性規(guī) 劃問題第1課時。我本節(jié)課嘗試?yán)眯抡n標(biāo)的理念來指導(dǎo)教學(xué),對于本節(jié)課, 我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法 學(xué)法分析、教學(xué)過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)的設(shè) 計,敬請各位專家、評委批評指正!一、教材分析:1、教材的地位與作用:線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié) 內(nèi)容是

2、在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識 展開的,它是對二元一次不等式的深化和再認(rèn)識、 再理解。通過這一部分的學(xué)習(xí), 使學(xué)生進(jìn)一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用, 體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方 法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。2、學(xué)情分析在本節(jié)課之前學(xué)生已經(jīng)有了直線的方程和用不等式(組)表示平面區(qū)域的理 論基礎(chǔ),并掌握了 直線定界,特殊點定域”的方法畫平面區(qū)域,具備了將二元 次方程和二元一次不等式轉(zhuǎn)化為直線和平面區(qū)域的意識,但學(xué)生初次接觸線性規(guī) 劃問題,缺乏數(shù)形轉(zhuǎn)化的意識和數(shù)學(xué)建模的能力。因此在教材處理上有一定難度,老師必須通過得當(dāng)?shù)恼T導(dǎo),

3、學(xué)生才能突破將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的瓶頸”, 讓學(xué)生體會到探究的快樂,培養(yǎng)學(xué)生的實際應(yīng)用能力。3、教學(xué)重點與難點:依據(jù)新課程標(biāo)準(zhǔn)和本課內(nèi)容學(xué)生的學(xué)情以及知識構(gòu)成的特點,我確定了以下的教學(xué)重點和難點:教學(xué)重點:1、用二元一次不等式組表示平面區(qū)域,建立數(shù)學(xué)模型,用圖解法確定最優(yōu)解;2、只有掌握了目標(biāo)函數(shù)的幾何意義,才能正確掌握用圖解法求解最優(yōu)化問題;教學(xué)難點:如何建模和如何定最優(yōu)解;數(shù)學(xué)建模思想較為抽象;學(xué)生沒有這方面的基礎(chǔ)知識。所以在難點重點突 破上我用現(xiàn)代化的教學(xué)手段,應(yīng)用數(shù)形結(jié)合的方法幫助學(xué)生弄清目標(biāo)函數(shù)的幾何 意義,并借助變式探究尋求不同類型目標(biāo)函數(shù)的求解規(guī)律。二、目標(biāo)分析:新課標(biāo)指 根

4、據(jù)簡 學(xué)數(shù)學(xué)、新課標(biāo)指出 三維目標(biāo)”是一個密切聯(lián)系的有機整體,應(yīng)該以獲得知識與技能 的過程,同時成為學(xué)會學(xué)習(xí)和正確價值觀。這要求我們在教學(xué)中以知識技能的培 養(yǎng)為主線,透情感態(tài)度與價值觀,并把這兩者充分體現(xiàn)在教學(xué)過程中, 出教學(xué)的主體是學(xué)生,因此目標(biāo)的制定和設(shè)計必須從學(xué)生的角度出發(fā), 單的線性規(guī)劃問題在教材內(nèi)容中的地位與作用,結(jié)合學(xué)情分析,在做數(shù)學(xué)、用數(shù)學(xué)”新課標(biāo)的理念指導(dǎo)下,我把本節(jié)課教學(xué)目標(biāo)為以下三個方面: 知識目標(biāo):1、了解簡單的線性規(guī)劃問題和線性規(guī)劃的意義;2、理解線性約束條件、目標(biāo)函數(shù)、可行解、可行域、最優(yōu)解等基本概念;3、了解簡單線性規(guī)劃實際問題的建模方法以及線性規(guī)劃的圖解法。能力目

5、標(biāo):1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力;2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力; 3、在對具體事例的感性認(rèn)識上升到對線性規(guī)劃的理性認(rèn)識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。情感目標(biāo):1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認(rèn)識論的思想。三、教法分析:鑒于我校高二學(xué)生已具有較好的數(shù)學(xué)基礎(chǔ)知識和較強的分析問題、解決問題的

6、能力,本節(jié)課我以學(xué)生為中心,以問題為載體,采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法。(1) 設(shè)置 問題”情境,激發(fā)學(xué)生解決問題的欲望;(2) 提供 觀察、探索、交流”的機會,引導(dǎo)學(xué)生獨立思考,有效地調(diào)動學(xué)生思維,使學(xué)生在開放的活動中獲取知識。(3) 利用多媒體輔助教學(xué),直觀生動地呈現(xiàn)圖解法求最優(yōu)解的過程,既加大課堂信息量,又提高了教學(xué)效率。(4) 指導(dǎo)學(xué)生做到 四會”會疑;會議;會思;會變。在教學(xué)過程中,重視學(xué)生的探索經(jīng)歷和發(fā)現(xiàn)新知的體驗,使學(xué)生形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)策略。四、過程分析:根據(jù)創(chuàng)新教育、主體教育、成功教育的教學(xué)觀,即在教學(xué)過程中創(chuàng)設(shè)問題情境,激發(fā)學(xué)生主動發(fā)現(xiàn)問題解決問題

7、,有效滲透數(shù)學(xué)思想方法,發(fā)展學(xué)生個性思維品質(zhì)?;诒竟?jié)課的內(nèi)容特點和高二學(xué)生的年齡特征,按照簡單線性規(guī)劃問題的三維目標(biāo)以及新教學(xué)學(xué)大綱、學(xué)生數(shù)學(xué)思維等特點,我采用高中數(shù)學(xué) 三五四”課堂教學(xué)策略, 以循序漸進(jìn)的原則層層深入,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),新的課程改革積極提倡“自 主探究、動手實踐、合作交流”的探究式學(xué)習(xí)方式。結(jié)合本節(jié)課的特點,本堂課我主要采用的是分組討論,自主探究的教學(xué)模式。因此,我將整個教學(xué)過程分為以下六個教學(xué)環(huán)節(jié):1、創(chuàng)設(shè)情境, 提出問題;2、分析問題,形成概念;3、反思過程,提煉方法;4、變式演練,深入探究;5、運用新知, 解決問題;6、歸納總結(jié),鞏固提高。具體的教學(xué)過程如下表

8、學(xué)習(xí)必備歡迎下載教師活動學(xué)生活動設(shè)計意圖教師活動課前準(zhǔn)備,預(yù)習(xí)階段教學(xué)過程設(shè)計詳案學(xué)生活動設(shè)計意圖【引入】 上節(jié)課,我們學(xué)習(xí)了二元一次不等式組表示平面區(qū)域。請同學(xué)們觀 察下面的圖像回答老師的幾個問題。【提問】投影回答下列問題1、二元一次不等式 Ax+By+C >0在平面直角坐標(biāo)系中表示什么圖形?-2、怎樣畫二元一次不等式(組)所表示的平面區(qū)域?應(yīng)注意哪些事項?3、直線定界,特殊點定域”方法的內(nèi)涵?【探究活動】:【引入】如果若干年后的你成為某工廠的廠長,你將會面讓學(xué)生進(jìn)行討 論對生產(chǎn)安排、資源利用、人力調(diào)配的問題1、創(chuàng)設(shè)情境,提出問題:(1)、創(chuàng)設(shè)情境,引入新課【引例】 老師用PPT展示題

9、目某工廠用A、B兩種產(chǎn)品生產(chǎn)甲、乙兩種產(chǎn)品,每生產(chǎn)一 千克甲產(chǎn)品使用4千克A原料并耗時1h,每生產(chǎn)一千克乙 產(chǎn)品使用4千克B原料并耗時2h,該廠每天最多可從配件 廠獲得16千克A原料和12千克B原料,按每天工作 8h計 算,該廠所有可能的日生產(chǎn)安排是什么?(2)、活動嘗試【思考】該題文字長,信息量大,怎么讀懂題意呢?耗時 (千克)A原料 (千克)B原料 (千克)甲產(chǎn)品乙產(chǎn)品日生產(chǎn)(限制)【回答】讓學(xué)生填下表學(xué)生觀察,討 論,形成對比思考,填表, 老師做補充通過復(fù)習(xí)舊知識為新 知識做鋪墊滲透研究 簡單的線性規(guī)劃問題通過、討論,思考提 高上課積極性,培養(yǎng) 學(xué)生的動手操作能 力、團(tuán)結(jié)合作能力創(chuàng)設(shè)學(xué)生

10、未來生活的一個情境,吸引學(xué)生的注意力,激發(fā)學(xué)生學(xué)習(xí)興趣,使學(xué)生由被動接受知識變?yōu)橹鲃尤ヌ骄恐R。引導(dǎo)學(xué)生對解決這樣 的與實際問題聯(lián)系密 切,而且信息量很大 的應(yīng)用題,常見的方 法是用列表法提取信 息,使問題直觀化, 這樣的設(shè)計符合教育 學(xué)中將抽象問題直觀 化的原則?!咀穯枴咳绾螌嶋H問題轉(zhuǎn)換為數(shù)學(xué)問題?引導(dǎo)學(xué)生設(shè)元。根據(jù)表格列出下列不等式方程組設(shè)甲、乙兩種產(chǎn)品的日依題意的:x,y滿足約束條件為生產(chǎn)分別為 X, y千克,X +2y <84x <164y <12X, y >0讓學(xué)生自己動 手:畫出不等 式組表示的平 面區(qū)域,由多 媒體展示結(jié) 果。這樣引導(dǎo)學(xué)生設(shè)元與轉(zhuǎn)化實現(xiàn)了

11、由代數(shù)到幾何轉(zhuǎn)化,成功的實現(xiàn)數(shù)形結(jié)合,分解了本節(jié)課的點。2、分析問題,形成概念(1)、提問解答問題【提問】 若生產(chǎn)一千克甲產(chǎn)品獲利 2萬元,生產(chǎn)一千克乙產(chǎn)品獲利 3萬元,采用哪種生產(chǎn)安排利潤最大?【出現(xiàn)的問題】1、不會設(shè)元,轉(zhuǎn)化題意;2、教師引導(dǎo)學(xué)生設(shè)元,設(shè)出目標(biāo)函數(shù):【求解】學(xué)生根據(jù)提示,列出目標(biāo)函數(shù)這樣引導(dǎo)學(xué)生設(shè)元與 轉(zhuǎn)化實現(xiàn)了由代數(shù)到 幾何的轉(zhuǎn)化,引導(dǎo)學(xué) 生轉(zhuǎn)化到尋找z的幾 何意義上來,成功的 實現(xiàn)數(shù)形結(jié)合,然后 借助多媒體課件展示 圖象和直線平移 ?!咀穯枴慨?dāng)x,y滿足不等式組(1)并且為非負(fù)整數(shù)時,Z的最大值是多少?【引導(dǎo)】把目標(biāo)函數(shù)化成斜截式,引導(dǎo)學(xué)生尋找目標(biāo)函數(shù)的幾何意義?!咀穯?/p>

12、】怎么樣畫我們怎樣去畫出這條直線呢?(老師用幾何畫板演示其動畫效果)(2)、合作學(xué)習(xí),總結(jié)問題畫目標(biāo)函數(shù)的過程:1、定方向(畫出 z=0的直線)滲透數(shù)形結(jié)合的思 想,培養(yǎng)學(xué)生的觀 察能力2、平移,定截距(平移 z=0的直線到截距最大點處)從現(xiàn)實問題到數(shù)學(xué)問題的步驟:引導(dǎo)學(xué)生歸納探究過程:1、列表;2、設(shè)元;3、列不等式組;4、畫出不等式組確定的平面區(qū)域?qū)W習(xí)必備歡迎下載4、運用知識,解決問題【練習(xí)11、營養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075 kg的碳水化合物,0.06 kg的蛋白質(zhì),0.06 kg的脂肪。1 kg食物A含有0.105 kg碳水化合物,0.07 kg蛋白質(zhì),0.14

13、 kg脂肪,花費28元;而1 kg食物B含有0.105 kg碳水化 合物,0.14 kg蛋白質(zhì),0.07 kg脂肪,花費21元。為了滿足 營養(yǎng)專家指出的日常飲食要求,同時使花費最低,需要同時食用食物A和食物B多少kg ?【教師提示答案1(運用多媒體進(jìn)行解題過程演示,然后運用EXCEL和通過學(xué)生的主體參學(xué)生進(jìn)行模仿解題過程;與,使學(xué)生深切體會叫一個學(xué)習(xí)到本節(jié)課的主要內(nèi)容和思想方法,從而實成績好的學(xué)生現(xiàn)對知識識的再次深上黑板進(jìn)行板演,其他學(xué)生進(jìn)化。行討論評價;教師進(jìn)行分培養(yǎng)學(xué)生探究問題的 能力、總結(jié)問題的能 力,同時把學(xué)生從抽析,運用象思維,轉(zhuǎn)化為具體EXCEL和思維,可以引發(fā)數(shù)學(xué)LINGO軟件進(jìn)

14、基礎(chǔ)成績不好學(xué)生的行解答學(xué)習(xí)積極性【提示1不是只有圖解法才可以解答線性規(guī)劃問題LINGO軟件進(jìn)行解答。)教師活動學(xué)生活動設(shè)計意圖5、變式演練,深入探究【例題21變量x、y滿足下列條件<xx+ y <1八-1求z=4x-2y的最大值和最小值;【變式11 設(shè)z=ax-2y,式中變量x、y滿足下列條件y蘭X* x+y <1y>-1若目標(biāo)函數(shù)z僅在點(5,2)處取到最大值,求a的取值范圍?!咀兪?1設(shè)z=ax-2y,式中變量x、y滿足下列條件使目標(biāo)函數(shù)X - 4y 蘭-3 3x + 5y < 25x 3 1z取得最大值的最優(yōu)解有無數(shù)個,求 a學(xué)生嘗試進(jìn)行 擴展,小組進(jìn)行

15、討論,合作完 成;教師進(jìn)行講 解進(jìn)一步強調(diào)目標(biāo)函數(shù) 直線的縱截距與 z的 最值之間的關(guān)系,有 時并不是截距越大,z 值越大。用已知有唯一(或從側(cè)面求解無數(shù))最優(yōu)解時反過來確定目標(biāo)函數(shù)某些線性規(guī)劃問字母系數(shù)的取值范圍題;來訓(xùn)練學(xué)生從各個不同的側(cè)面去理解圖解法求最優(yōu)解的實質(zhì),培養(yǎng)學(xué)生思維的發(fā)散性。學(xué)習(xí)必備歡迎下載為使學(xué)生對所學(xué)的6、歸納總結(jié),鞏固提高(1)、(1)歸納小結(jié)這節(jié)課學(xué)習(xí)了哪些知識;知識有一個完整而深學(xué)生進(jìn)行總 結(jié)刻的印象培養(yǎng)了學(xué)生(2)、學(xué)到了哪些思考問題的方法?作業(yè)布置1.閱完成課本P65習(xí)題7.4第2題數(shù)學(xué)交流和表達(dá)的能力。2.思考題:設(shè)z=2x-y,式中變量x、y滿足下列條X - 4y < -3 3x + 5y < 25件lx工1且變量X、y為整數(shù),求z的最大值和最小值。(3)、板書設(shè)計老師適當(dāng)?shù)?說明讓學(xué)生鞏固所學(xué)內(nèi)容 并進(jìn)行自我檢測與評 價,并為下一課時解 決實際問題中的最優(yōu) 解是整數(shù)解的教學(xué)埋 下伏筆。播1)復(fù)習(xí)放2 )新課講解屏3)練習(xí)幕4)小結(jié)簡單的線性規(guī)劃問題3.2.1”在板書中突出本 節(jié)重點,將強調(diào)的 地方如定義中,同 時給學(xué)生留有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論