第二十四章圓_第1頁
第二十四章圓_第2頁
第二十四章圓_第3頁
第二十四章圓_第4頁
第二十四章圓_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、黃興中學(xué) 九年級(jí) 數(shù)學(xué) 教者:謝志友第二十四章 圓 教學(xué)內(nèi)容 1本單元數(shù)學(xué)的主要內(nèi)容 (1)圓有關(guān)的概念:垂直于弦的直徑,弧、弦、圓心角、圓周角 (2)與圓有關(guān)的位置關(guān)系:點(diǎn)和圓的位置關(guān)系,直線與圓的位置關(guān)系,圓和圓的位置關(guān)系 (3)正多邊形和圓 (4)弧長和扇形面積:弧長和扇形面積,圓錐的側(cè)面積和全面積 2本單元在教材中的地位與作用 學(xué)生在學(xué)習(xí)本章之前,已通過折疊、對(duì)稱、平移旋轉(zhuǎn)、推理證明等方式認(rèn)識(shí)了許多圖形的性質(zhì),積累了大量的空間與圖形的經(jīng)驗(yàn)本章是在學(xué)習(xí)了這些直線型圖形的有關(guān)性質(zhì)的基礎(chǔ)上,進(jìn)一步來探索一種特殊的曲線圓的有關(guān)性質(zhì)通過本章的學(xué)習(xí),對(duì)學(xué)生今后繼續(xù)學(xué)習(xí)數(shù)學(xué),尤其是逐步樹立分類討論的

2、數(shù)學(xué)思想、歸納的數(shù)學(xué)思想起著良好的鋪墊作用本章的學(xué)習(xí)是高中的數(shù)學(xué)學(xué)習(xí),尤其是圓錐曲線的學(xué)習(xí)的基礎(chǔ)性工程 教學(xué)目標(biāo) 1知識(shí)與技能 (1)了解圓的有關(guān)概念,探索并理解垂徑定理,探索并認(rèn)識(shí)圓心角、弧、弦之間的相等關(guān)系的定理,探索并理解圓周角和圓心角的關(guān)系定理 (2)探索并理解點(diǎn)和圓、直線與圓以及圓與圓的位置關(guān)系:了解切線的概念,探索切線與過切點(diǎn)的直徑之間的關(guān)系,能判定一條直線是否為圓的切線,會(huì)過圓上一點(diǎn)畫圓的切線 (3)進(jìn)一步認(rèn)識(shí)和理解正多邊形和圓的關(guān)系和正多邊的有關(guān)計(jì)算 (4)熟練掌握弧長和扇形面積公式及其它們的應(yīng)用;理解圓錐的側(cè)面展開圖并熟練掌握?qǐng)A錐的側(cè)面積和全面積的計(jì)算 2過程與方法 (1)積

3、極引導(dǎo)學(xué)生從事觀察、測(cè)量、平移、旋轉(zhuǎn)、推理證明等活動(dòng)了解概念,理解等量關(guān)系,掌握定理及公式 (2)在教學(xué)過程中,鼓勵(lì)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,并進(jìn)行同伴之間的交流 (3)在探索圓周角和圓心角之間的關(guān)系的過程中,讓學(xué)生形成分類討論的數(shù)學(xué)思想和歸納的數(shù)學(xué)思想 (4)通過平移、旋轉(zhuǎn)等方式,認(rèn)識(shí)直線與圓、圓與圓的位置關(guān)系,使學(xué)生明確圖形在運(yùn)動(dòng)變化中的特點(diǎn)和規(guī)律,進(jìn)一步發(fā)展學(xué)生的推理能力 (5)探索弧長、扇形的面積、圓錐的側(cè)面積和全面積的計(jì)算公式并理解公式的意義、理解算法的意義 3情感、態(tài)度與價(jià)值觀 經(jīng)歷探索圓及其相關(guān)結(jié)論的過程,發(fā)展學(xué)生的數(shù)學(xué)思考能力;通過積極引導(dǎo),幫助學(xué)生有意識(shí)地積累活動(dòng)經(jīng)驗(yàn),獲得成功的

4、體驗(yàn);利用現(xiàn)實(shí)生活和數(shù)學(xué)中的素材,設(shè)計(jì)具有挑戰(zhàn)性的情景,激發(fā)學(xué)生求知、探索的欲望 教學(xué)重點(diǎn) 1平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧及其運(yùn)用 2在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等及其運(yùn)用 3在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半及其運(yùn)用 4半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑及其運(yùn)用 5不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓 6直線L和O相交d<r;直線L和圓相切d=r;直線L和O相離d>r及其運(yùn)用 7圓的切線垂直于過切點(diǎn)的半徑及其運(yùn)用 8經(jīng)過半徑的外端并且垂直于這條半徑的直線

5、是圓的切線并利用它解決一些具體問題 9從圓外一點(diǎn)可以引圓的兩條切線,它們的切線長相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角及其運(yùn)用 10兩圓的位置關(guān)系:d與r1和r2之間的關(guān)系:外離d>r1+r2;外切d=r1+r2;相交r2-r1<d<r1+r2;內(nèi)切d=r1-r2;內(nèi)含d<r2-r1 11正多邊形和圓中的半徑R、邊心距r、中心角之間的等量關(guān)系并應(yīng)用這個(gè)等量關(guān)系解決具體題目 12n°的圓心角所對(duì)的弧長為L=,n°的圓心角的扇形面積是S扇形=及其運(yùn)用這兩個(gè)公式進(jìn)行計(jì)算 13圓錐的側(cè)面積和全面積的計(jì)算 教學(xué)難點(diǎn) 1垂徑定理的探索與推導(dǎo)及利用它解決一些實(shí)

6、際問題 2弧、弦、圓心有的之間互推的有關(guān)定理的探索與推導(dǎo),并運(yùn)用它解決一些實(shí)際問題 3有關(guān)圓周角的定理的探索及推導(dǎo)及其它的運(yùn)用 4點(diǎn)與圓的位置關(guān)系的應(yīng)用 5三點(diǎn)確定一個(gè)圓的探索及應(yīng)用 6直線和圓的位置關(guān)系的判定及其應(yīng)用 7切線的判定定理與性質(zhì)定理的運(yùn)用 8切線長定理的探索與運(yùn)用 9圓和圓的位置關(guān)系的判定及其運(yùn)用 10正多邊形和圓中的半徑R、邊心距r、中心角的關(guān)系的應(yīng)用 11n的圓心角所對(duì)的弧長L=及S扇形的公式的應(yīng)用 12圓錐側(cè)面展開圖的理解 教學(xué)關(guān)鍵 1積極引導(dǎo)學(xué)生通過觀察、測(cè)量、折疊、平移、旋轉(zhuǎn)等數(shù)學(xué)活動(dòng)探索定理、性質(zhì)、“三個(gè)”位置關(guān)系并推理證明等活動(dòng) 2關(guān)注學(xué)生思考方式的多樣化,注重學(xué)生

7、計(jì)算能力的培養(yǎng)與提高 3在觀察、操作和推導(dǎo)活動(dòng)中,使學(xué)生有意識(shí)地反思其中的數(shù)學(xué)思想方法,發(fā)展學(xué)生有條理的思考能力及語言表達(dá)能力 單元課時(shí)劃分 本單元教學(xué)時(shí)間約需13課時(shí),具體分配如下: 241 圓 3課時(shí) 242 與圓有關(guān)的位置關(guān)系 4課時(shí) 243 正多邊形和圓 1課時(shí) 244 弧長和扇形面積 2課時(shí)教學(xué)活動(dòng)、習(xí)題課、小結(jié) 3課時(shí)241 圓教學(xué)內(nèi)容 1圓的有關(guān)概念 2垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧及其它們的應(yīng)用教學(xué)目標(biāo) 了解圓的有關(guān)概念,理解垂徑定理并靈活運(yùn)用垂徑定理及圓的概念解決一些實(shí)際問題 從感受圓在生活中大量存在到圓形及圓的形成過程,講授圓的有關(guān)概念利

8、用操作幾何的方法,理解圓是軸對(duì)稱圖形,過圓心的直線都是它的對(duì)稱軸通過復(fù)合圖形的折疊方法得出猜想垂徑定理,并輔以邏輯證明加予理解重難點(diǎn)、關(guān)鍵 1重點(diǎn):垂徑定理及其運(yùn)用 2難點(diǎn)與關(guān)鍵:探索并證明垂徑定理及利用垂徑定理解決一些實(shí)際問題教學(xué)過程個(gè)人設(shè)計(jì)一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)口答下面兩個(gè)問題(提問一、兩個(gè)同學(xué)) 1舉出生活中的圓三、四個(gè) 2你能講出形成圓的方法有多少種? 老師點(diǎn)評(píng)(口答):(1)如車輪、杯口、時(shí)針等(2)圓規(guī):固定一個(gè)定點(diǎn),固定一個(gè)長度,繞定點(diǎn)拉緊運(yùn)動(dòng)就形成一個(gè)圓 二、探索新知 從以上圓的形成過程,我們可以得出: 在一個(gè)平面內(nèi),線段OA繞它固定的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所

9、形成的圖形叫做圓固定的端點(diǎn)O叫做圓心,線段OA叫做半徑 以點(diǎn)O為圓心的圓,記作“O”,讀作“圓O” 學(xué)生四人一組討論下面的兩個(gè)問題: 問題1:圖上各點(diǎn)到定點(diǎn)(圓心O)的距離有什么規(guī)律? 問題2:到定點(diǎn)的距離等于定長的點(diǎn)又有什么特點(diǎn)? 老師提問幾名學(xué)生并點(diǎn)評(píng)總結(jié) (1)圖上各點(diǎn)到定點(diǎn)(圓心O)的距離都等于定長(半徑r); (2)到定點(diǎn)的距離等于定長的點(diǎn)都在同一個(gè)圓上因此,我們可以得到圓的新定義:圓心為O,半徑為r的圓可以看成是所有到定點(diǎn)O的距離等于定長r的點(diǎn)組成的圖形 同時(shí),我們又把 連接圓上任意兩點(diǎn)的線段叫做弦,如圖線段AC,AB; 經(jīng)過圓心的弦叫做直徑,如圖24-1線段AB; 圓上任意兩點(diǎn)間

10、的部分叫做圓弧,簡(jiǎn)稱弧,“以A、C為端點(diǎn)的弧記作”,讀作“圓弧”或“弧AC”大于半圓的?。ㄈ鐖D所示叫做優(yōu)弧,小于半圓的?。ㄈ鐖D所示)或叫做劣弧 圓的任意一條直徑的兩個(gè)端點(diǎn)把圓分成兩條弧,每一條弧都叫做半圓 (學(xué)生活動(dòng))請(qǐng)同學(xué)們回答下面兩個(gè)問題 1圓是軸對(duì)稱圖形嗎?如果是,它的對(duì)稱軸是什么?你能找到多少條對(duì)稱軸?2你是用什么方法解決上述問題的?與同伴進(jìn)行交流 (老師點(diǎn)評(píng))1圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑,我能找到無數(shù)多條直徑 3我是利用沿著圓的任意一條直徑折疊的方法解決圓的對(duì)稱軸問題的 因此,我們可以得到:圓是軸對(duì)稱圖形,其對(duì)稱軸是任意一條過圓心的直線 (學(xué)生活動(dòng))請(qǐng)同學(xué)按下面要求完成下題:如

11、圖,AB是O的一條弦,作直徑CD,使CDAB,垂足為M (1)如圖是軸對(duì)稱圖形嗎?如果是,其對(duì)稱軸是什么? (2)你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?說一說你理由 (老師點(diǎn)評(píng))(1)是軸對(duì)稱圖形,其對(duì)稱軸是CD (2)AM=BM,即直徑CD平分弦AB,并且平分及 這樣,我們就得到下面的定理:垂直于弦的直徑平分弦,并且平分弦所對(duì)的兩條弧 下面我們用邏輯思維給它證明一下: 已知:直徑CD、弦AB且CDAB垂足為M 求證:AM=BM,. 分析:要證AM=BM,只要證AM、BM構(gòu)成的兩個(gè)三角形全等因此,只要連結(jié)OA、OB或AC、BC即可證明:如圖,連結(jié)OA、OB,則OA=OB在RtOAM和RtOBM中 RtO

12、AMRtOBM AM=BM 點(diǎn)A和點(diǎn)B關(guān)于CD對(duì)稱 O關(guān)于直徑CD對(duì)稱當(dāng)圓沿著直線CD對(duì)折時(shí),點(diǎn)A與點(diǎn)B重合,與重合,與重合, 進(jìn)一步,我們還可以得到結(jié)論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧 (本題的證明作為課后練習(xí)) 例1如圖,一條公路的轉(zhuǎn)彎處是一段圓弦(即圖中,點(diǎn)O是的圓心,其中CD=600m,E為上一點(diǎn),且OECD,垂足為F,EF=90m,求這段彎路的半徑分析:例1是垂徑定理的應(yīng)用,解題過程中使用了列方程的方法,這種用代數(shù)方法解決幾何問題即幾何代數(shù)解的數(shù)學(xué)思想方法一定要掌握 解:如圖,連接OC 設(shè)彎路的半徑為R,則OF=(R-90)m OECD CF=CD=

13、5;600=300(m) 根據(jù)勾股定理,得:OC2=CF2+OF2 即R2=3002+(R-90)2 解得R=545 這段彎路的半徑為545m 三、鞏固練習(xí) 教材P86 練習(xí) P88 練習(xí) 四、應(yīng)用拓展例2有一石拱橋的橋拱是圓弧形,如圖24-5所示,正常水位下水面寬AB=60m,水面到拱頂距離CD=18m,當(dāng)洪水泛濫時(shí),水面寬MN=32m時(shí)是否需要采取緊急措施?請(qǐng)說明理由 分析:要求當(dāng)洪水到來時(shí),水面寬MN=32m是否需要采取緊急措施,只要求出DE的長,因此只要求半徑R,然后運(yùn)用幾何代數(shù)解求R 五、歸納小結(jié)(學(xué)生歸納,老師點(diǎn)評(píng)) 本節(jié)課應(yīng)掌握: 1圓的有關(guān)概念; 2圓是軸對(duì)稱圖形,任何一條直徑

14、所在直線都是它的對(duì)稱軸 3垂徑定理及其推論以及它們的應(yīng)用教學(xué)反思241 圓(第二課時(shí))教學(xué)內(nèi)容 1圓心角的概念 2有關(guān)弧、弦、圓心角關(guān)系的定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等 3定理的推論:在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦相等 在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧也相等教學(xué)目標(biāo) 了解圓心角的概念:掌握在同圓或等圓中,圓心角、弦、弧中有一個(gè)量的兩個(gè)相等就可以推出其它兩個(gè)量的相對(duì)應(yīng)的兩個(gè)值就相等,及其它們?cè)诮忸}中的應(yīng)用 通過復(fù)習(xí)旋轉(zhuǎn)的知識(shí),產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識(shí)探索在同圓或等圓中,如果兩個(gè)

15、圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等,最后應(yīng)用它解決一些具體問題重難點(diǎn)、關(guān)鍵 1重點(diǎn):定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)弦也相等及其兩個(gè)推論和它們的應(yīng)用 2難點(diǎn)與關(guān)鍵:探索定理和推導(dǎo)及其應(yīng)用教學(xué)過程個(gè)人設(shè)計(jì) 一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們完成下題已知OAB,如圖所示,作出繞O點(diǎn)旋轉(zhuǎn)30°、45°、60°的圖形 老師點(diǎn)評(píng):繞O點(diǎn)旋轉(zhuǎn),O點(diǎn)就是固定點(diǎn),旋轉(zhuǎn)30°,就是旋轉(zhuǎn)角BOB=30° 二、探索新知如圖所示,AOB的頂點(diǎn)在圓心,像這樣頂點(diǎn)在圓心的角叫做圓心角 (學(xué)生活動(dòng))請(qǐng)同學(xué)們按下列要

16、求作圖并回答問題:如圖所示的O中,分別作相等的圓心角AOB和AOB將圓心角AOB繞圓心O旋轉(zhuǎn)到AOB的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么? =,AB=AB 理由:半徑OA與OA重合,且AOB=AOB 半徑OB與OB重合 點(diǎn)A與點(diǎn)A重合,點(diǎn)B與點(diǎn)B重合 與重合,弦AB與弦AB重合=,AB=AB因此,在同一個(gè)圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等 在等圓中,相等的圓心角是否也有所對(duì)的弧相等,所對(duì)的弦相等呢?請(qǐng)同學(xué)們現(xiàn)在動(dòng)手作一作(學(xué)生活動(dòng))老師點(diǎn)評(píng):如圖1,在O和O中,分別作相等的圓心角AOB和AOB得到如圖2,滾動(dòng)一個(gè)圓,使O與O重合,固定圓心,將其中的一個(gè)圓旋轉(zhuǎn)一個(gè)角度,使得OA與OA重

17、合 (1) (2) 你能發(fā)現(xiàn)哪些等量關(guān)系?說一說你的理由? 我能發(fā)現(xiàn):=,AB=A/B/ 現(xiàn)在它的證明方法就轉(zhuǎn)化為前面的說明了,這就是又回到了我們的數(shù)學(xué)思想上去呢化歸思想,化未知為已知,因此,我們可以得到下面的定理:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等 同樣,還可以得到: 在同圓或等圓中,如果兩條弧相等,那么它們所對(duì)的圓心角相等,所對(duì)的弦也相等 在同圓或等圓中,如果兩條弦相等,那么它們所對(duì)的圓心角相等,所對(duì)的弧也相等 (學(xué)生活動(dòng))請(qǐng)同學(xué)們現(xiàn)在給予說明一下 請(qǐng)三位同學(xué)到黑板板書,老師點(diǎn)評(píng) 例1如圖,在O中,AB、CD是兩條弦,OEAB,OFCD,垂足分別為EF (1)如果AO

18、B=COD,那么OE與OF的大小有什么關(guān)系?為什么?(2)如果OE=OF,那么與的大小有什么關(guān)系?AB與CD的大小有什么關(guān)系?為什么?AOB與COD呢?分析:(1)要說明OE=OF,只要在直角三角形AOE和直角三角形COF中說明AE=CF,即說明AB=CD,因此,只要運(yùn)用前面所講的定理即可(2)OE=OF,在RtAOE和RtCOF中,又有AO=CO是半徑,RtAOERtCOF,AE=CF,AB=CD,又可運(yùn)用上面的定理得到=解:(1)如果AOB=COD,那么OE=OF 理由是:AOB=COD AB=CD OEAB,OFCD AE=AB,CF=CD AE=CF 又OA=OC RtOAERtOCF

19、 OE=OF (2)如果OE=OF,那么AB=CD,=,AOB=COD 理由是: OA=OC,OE=OF RtOAERtOCF AE=CF 又OEAB,OFCD AE=AB,CF=CD AB=2AE,CD=2CF AB=CD =,AOB=COD 三、鞏固練習(xí) 教材P89 練習(xí)1 教材P90 練習(xí)2 四、應(yīng)用拓展 例2如圖3和圖4,MN是O的直徑,弦AB、CD相交于MN上的一點(diǎn)P,APM=CPM (1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請(qǐng)說明理由(2)若交點(diǎn)P在O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請(qǐng)說明理由教學(xué)反思241 圓(第3課時(shí))教學(xué)內(nèi)容 1圓周角的概念 2圓

20、周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弦所對(duì)的圓心角的一半 推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑及其它們的應(yīng)用教學(xué)目標(biāo) 1了解圓周角的概念 2理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半 3理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑 4熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用 設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決

21、一些實(shí)際問題重難點(diǎn)、關(guān)鍵 1重點(diǎn):圓周角的定理、圓周角的定理的推導(dǎo)及運(yùn)用它們解題 2難點(diǎn):運(yùn)用數(shù)學(xué)分類思想證明圓周角的定理 3關(guān)鍵:探究圓周角的定理的存在教學(xué)過程個(gè)人設(shè)計(jì)一、復(fù)習(xí)引入 (學(xué)生活動(dòng))請(qǐng)同學(xué)們口答下面兩個(gè)問題 1什么叫圓心角? 2圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢? 老師點(diǎn)評(píng):(1)我們把頂點(diǎn)在圓心的角叫圓心角 (2)在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對(duì)的其余各組量都分別相等 剛才講的,頂點(diǎn)在圓心上的角,有一組等量的關(guān)系,如果頂點(diǎn)不在圓心上,它在其它的位置上?如在圓周上,是否還存在一些等量關(guān)系呢?這就是我們今天要探討,要研究,要解決的問題二、探

22、索新知問題:如圖所示的O,我們?cè)谏溟T游戲中,設(shè)E、F是球門,設(shè)球員們只能在所在的O其它位置射門,如圖所示的A、B、C點(diǎn)通過觀察,我們可以發(fā)現(xiàn)像EAF、EBF、ECF這樣的角,它們的頂點(diǎn)在圓上,并且兩邊都與圓相交的角叫做圓周角現(xiàn)在通過圓周角的概念和度量的方法回答下面的問題 1一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)? 2同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化? 3同弧上的圓周角與圓心角有什么關(guān)系?(學(xué)生分組討論)提問二、三位同學(xué)代表發(fā)言老師點(diǎn)評(píng): 初中數(shù)學(xué)資源網(wǎng) 1一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有無數(shù)多個(gè) 2通過度量,我們可以發(fā)現(xiàn),同弧所對(duì)的圓周角是沒有變化的 3通過度量,我們可以得出

23、,同弧上的圓周角是圓心角的一半 下面,我們通過邏輯證明來說明“同弧所對(duì)的圓周角的度數(shù)沒有變化,并且它的度數(shù)恰好等于這條弧所對(duì)的圓心角的度數(shù)的一半”(1)設(shè)圓周角ABC的一邊BC是O的直徑,如圖所示 AOC是ABO的外角 AOC=ABO+BAO OA=OB ABO=BAO AOC=ABO ABC=AOC(2)如圖,圓周角ABC的兩邊AB、AC在一條直徑OD的兩側(cè),那么ABC=AOC嗎?請(qǐng)同學(xué)們獨(dú)立完成這道題的說明過程 老師點(diǎn)評(píng):連結(jié)BO交O于D同理AOD是ABO的外角,COD是BOC的外角,那么就有AOD=2ABO,DOC=2CBO,因此AOC=2ABC(3)如圖,圓周角ABC的兩邊AB、AC在

24、一條直徑OD的同側(cè),那么ABC=AOC嗎?請(qǐng)同學(xué)們獨(dú)立完成證明老師點(diǎn)評(píng):連結(jié)OA、OC,連結(jié)BO并延長交O于D,那么AOD=2ABD,COD=2CBO,而ABC=ABD-CBO=AOD-COD=AOC 現(xiàn)在,我如果在畫一個(gè)任意的圓周角ABC,同樣可證得它等于同弧上圓心角一半,因此,同弧上的圓周角是相等的 從(1)、(2)、(3),我們可以總結(jié)歸納出圓周角定理: 在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半 進(jìn)一步,我們還可以得到下面的推導(dǎo): 半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑 下面,我們通過這個(gè)定理和推論來解一些題目 例1如圖,

25、AB是O的直徑,BD是O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?分析:BD=CD,因?yàn)锳B=AC,所以這個(gè)ABC是等腰,要證明D是BC的中點(diǎn),只要連結(jié)AD證明AD是高或是BAC的平分線即可 解:BD=CD 理由是:如圖24-30,連接AD AB是O的直徑 ADB=90°即ADBC 又AC=ABBD=CD 教學(xué)反思點(diǎn)和圓的位置關(guān)系教學(xué)內(nèi)容了解不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓,以及過不在同一條直線上的三個(gè)點(diǎn)作圓的方法,了解三角形的外接圓、三角形的外心等概念教學(xué)目標(biāo)1經(jīng)歷不在同一條直線上的三個(gè)點(diǎn)確定一個(gè)圓的探索過程,培養(yǎng)學(xué)生的探索能力2通過探索不在同一條直線

26、上的三個(gè)點(diǎn)確定一個(gè)圓的問題,進(jìn)一步體會(huì)解決數(shù)學(xué)問題的策略重難點(diǎn)、關(guān)鍵1形成解決問題的一些基本策略,體驗(yàn)解決問題策略的多樣性,發(fā)展實(shí)踐能力與創(chuàng)新精神2學(xué)會(huì)與人合作,并能與他人交流思維的過程和結(jié)果教學(xué)過程個(gè)人設(shè)計(jì)創(chuàng)設(shè)問題情境,引入新課師我們知道經(jīng)過一點(diǎn)可以作無數(shù)條直線,經(jīng)過兩點(diǎn)只能作一條直線那么,經(jīng)過一點(diǎn)能作幾個(gè)圓?經(jīng)過兩點(diǎn)、三點(diǎn)呢?本節(jié)課我們將進(jìn)行有關(guān)探索新課講解1回憶及思考投影片(§34A)1線段垂直平分線的性質(zhì)及作法2作圓的關(guān)鍵是什么?生1線段垂直平分線的性質(zhì)是:線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等作法:如下圖,分別以A、B為圓心,以大于AB長為半徑畫弧,在AB的兩側(cè)找出兩交

27、點(diǎn)C、D,作直線CD,則直線CD就是線段AB的垂直平分線,直線CD上的任一點(diǎn)到A與B的距離相等師我們知道圓的定義是:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓定點(diǎn)即為圓心,定長即為半徑根據(jù)定義大家覺得作圓的關(guān)鍵是什么?生由定義可知,作圓的問題實(shí)質(zhì)上就是圓心和半徑的問題因此作圓的關(guān)鍵是確定圓心和半徑的大小確定了圓心和半徑,圓就隨之確定2做一做(投影片§34B)(1)作圓,使它經(jīng)過已知點(diǎn)A,你能作出幾個(gè)這樣的圓?(2)作圓,使它經(jīng)過已知點(diǎn)A、B你是如何作的?你能作出幾個(gè)這樣的圓?其圓心的分布有什么特點(diǎn)?與線段AB有什么關(guān)系?為什么?(3)作圓,使它經(jīng)過已知點(diǎn)A、B、C(A、B、C

28、三點(diǎn)不在同一條直線上)你是如何作的?你能作出幾個(gè)這樣的圓?師根據(jù)剛才我們的分析已知,作圓的關(guān)鍵是確定圓心和半徑,下面請(qǐng)大家互相交換意見并作出解答生(1)因?yàn)樽鲌A實(shí)質(zhì)上是確定圓心和半徑,要經(jīng)過已知點(diǎn)A作圓,只要圓心確定下來,半徑就隨之確定了下來所以以點(diǎn)A以外的任意一點(diǎn)為圓心,以這一點(diǎn)與點(diǎn)A所連的線段為半徑就可以作一個(gè)圓由于圓心是任意的因此這樣的圓有無數(shù)個(gè)如圖(1)(2)已知點(diǎn)A、B都在圓上,它們到圓心的距離都等于半徑因此圓心到A、B的距離相等根據(jù)前面提到過的線段的垂直平分線的性質(zhì)可知,線段的垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等,則圓心應(yīng)在線段AB的垂直平分線上在AB的垂直平分線上任意取一點(diǎn),都

29、能滿足到A、B兩點(diǎn)的距離相等,所以在AB的垂直平分線上任取一點(diǎn)都可以作為圓心,這點(diǎn)到A的距離即為半徑圓就確定下來了由于線段AB的垂直平分線上有無數(shù)點(diǎn),因此有無數(shù)個(gè)圓心,作出的圓有無數(shù)個(gè)如圖(2)(3)要作一個(gè)圓經(jīng)過A、B、C三點(diǎn),就是要確定一個(gè)點(diǎn)作為圓心,使它到三點(diǎn)的距離相等因?yàn)榈紸、B兩點(diǎn)距離相等的點(diǎn)的集合是線段AB的垂直平分線,到B、C兩點(diǎn)距離相等的點(diǎn)的集合是線段BC的垂直平分線,這兩條垂直平分線的交點(diǎn)滿足到A、B、C三點(diǎn)的距離相等,就是所作圓的圓心因?yàn)閮蓷l直線的交點(diǎn)只有一個(gè),所以只有一個(gè)圓心,即只能作出一個(gè)滿足條件的圓師大家的分析很有道理,究竟應(yīng)該怎樣找圓心呢?3過不在同一條直線上的三點(diǎn)

30、作圓作法圖示1連結(jié)AB、BC2分別作AB、BC的垂直平分線DE和FG,DE和FG相交于點(diǎn)O3以O(shè)為圓心,OA為半徑作圓O就是所要求作的圓他作的圓符合要求嗎?與同伴交流生符合要求因?yàn)檫B結(jié)AB,作AB的垂直平分線ED,則ED上任意一點(diǎn)到A、B的距離相等;連結(jié)BC,作BC的垂直平分線FG,則FG上的任一點(diǎn)到B、C的距離相等ED與FG的滿足條件師由上可知,過已知一點(diǎn)可作無數(shù)個(gè)圓過已知兩點(diǎn)也可作無數(shù)個(gè)圓,過不在同一條直線上的三點(diǎn)可以作一個(gè)圓,并且只能作一個(gè)圓不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓4有關(guān)定義由上可知,經(jīng)過三角形的三個(gè)頂點(diǎn)可以作一個(gè)圓,這個(gè)圓叫做三角形的外接圓(circumcircle of tr

31、iangle),這個(gè)三角形叫這個(gè)圓的內(nèi)接三角形外接圓的圓心是三角形三邊垂直平分線的交點(diǎn),叫做三角形的外心(circumcenter)課堂練習(xí)已知銳角三角形、直角三角形、鈍角三角形,分別作出它們的外接圓,它們外心的位置有怎樣的特點(diǎn)?解:如下圖O為外接圓的圓心,即外心銳角三角形的外心在三角形的內(nèi)部,直角三角形的外心在斜邊上,鈍角三角形的外心在三角形的外部教學(xué)反思直線和圓的位置關(guān)系教學(xué)內(nèi)容1理解直線與圓有相交、相切、相離三種位置關(guān)系2了解切線的概念,探索切線與過切點(diǎn)的直徑之間的關(guān)系教學(xué)目標(biāo)經(jīng)歷探索直線與圓位置關(guān)系的過程理解直線與圓的三種位置關(guān)系了解切線的概念以及切線的性質(zhì)重難點(diǎn)、關(guān)鍵經(jīng)歷探索直線與圓

32、的位置關(guān)系的過程,歸納總結(jié)出直線與圓的三種位置關(guān)系探索圓的切線的性質(zhì)教學(xué)過程個(gè)人設(shè)計(jì)創(chuàng)設(shè)問題情境,引入新課師我們?cè)谇懊鎸W(xué)過點(diǎn)和圓的位置關(guān)系,請(qǐng)大家回憶它們的位置關(guān)系有哪些?生圓是平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形即圓上的點(diǎn)到圓心的距離等于半徑;圓的內(nèi)部到圓心的距離小于半徑;圓的外部到圓心的距離大于半徑因此點(diǎn)和圓的位置關(guān)系有三種,即點(diǎn)在圓上、點(diǎn)在圓內(nèi)和點(diǎn)在圓外也可以把點(diǎn)與圓心的距離和半徑作比較,若距離大于半徑在圓外,等于半徑在圓上,小于半徑在圓內(nèi)師本節(jié)課我們將類比地學(xué)習(xí)直線和圓的位置關(guān)系新課講解1復(fù)習(xí)點(diǎn)到直線的距離的定義生從已知點(diǎn)向已知直線作垂線,已知點(diǎn)與垂足之間的線段的長度叫做這個(gè)點(diǎn)

33、到這條直線的距離如下圖,C為直線AB外一點(diǎn),從C向AB引垂線,D為垂足,則線段CD即為點(diǎn)C到直線AB的距離2探索直線與圓的三種位置關(guān)系師直線和圓的位置關(guān)系,我們?cè)诂F(xiàn)實(shí)生活中隨處可見,只要大家注意觀察,這樣的例子是很多的如大家請(qǐng)看課本113頁,觀察圖中的三幅照片,地平線和太陽的位置關(guān)系怎樣?作一個(gè)圓,把直尺的邊緣看成一條直線,固定圓,平移直尺,直線和圓有幾種位置關(guān)系?生把太陽看作圓,地平線看作直線,則直線和圓有三種位置關(guān)系;把直尺的邊緣看成一條直線,則直線和圓有三種位置關(guān)系2探索直線與圓的三種位置關(guān)系師直線和圓的位置關(guān)系,我們?cè)诂F(xiàn)實(shí)生活中隨處可見,只要大家注意觀察,這樣的例子是很多的如大家請(qǐng)看課

34、本113頁,觀察圖中的三幅照片,地平線和太陽的位置關(guān)系怎樣?作一個(gè)圓,把直尺的邊緣看成一條直線,固定圓,平移直尺,直線和圓有幾種位置關(guān)系?生把太陽看作圓,地平線看作直線,則直線和圓有三種位置關(guān)系;把直尺的邊緣看成一條直線,則直線和圓有三種位置關(guān)系師從上面的舉例中,大家能否得出結(jié)論,直線和圓的位置關(guān)系有幾種呢?生有三種位置關(guān)系:師直線和圓有三種位置關(guān)系,如下圖:它們分別是相交、相切、相離當(dāng)直線與圓相切時(shí)(即直線和圓有唯一公共點(diǎn)),這條直線叫做圓的切線(tangent line)當(dāng)直線與圓有兩個(gè)公共點(diǎn)時(shí),叫做直線和圓相交當(dāng)直線與圓沒有公共點(diǎn)時(shí),叫做直線和圓相離因此,從直線與圓有公共點(diǎn)的個(gè)數(shù)可以斷定

35、是哪一種位置關(guān)系,你能總結(jié)嗎?生當(dāng)直線與圓有唯一公共點(diǎn)時(shí),這時(shí)直線與圓相切;當(dāng)直線與圓有兩個(gè)公共點(diǎn)時(shí),這時(shí)直線與圓相交;當(dāng)直線與圓沒有公共點(diǎn)時(shí),這時(shí)直線與圓相離師能否根據(jù)點(diǎn)和圓的位置關(guān)系,點(diǎn)到圓心的距離d和半徑r作比較,類似地推導(dǎo)出如何用點(diǎn)到直線的距離d和半徑r之間的關(guān)系來確定三種位置關(guān)系呢?生如上圖中,圓心O到直線l的距離為d,圓的半徑為r,當(dāng)直線與圓相交時(shí),dr;當(dāng)直線與圓相切時(shí),dr;當(dāng)直線與圓相離時(shí),dr,因此可以用d與r間的大小關(guān)系斷定直線與圓的位置關(guān)系師由此可知:判斷直線與圓的位置關(guān)系有兩種方法一種是從直線與圓的公共點(diǎn)的個(gè)數(shù)來斷定;一種是用d與r的大小關(guān)系來斷定投影片(§

36、351A)(1)從公共點(diǎn)的個(gè)數(shù)來判斷:直線與圓有兩個(gè)公共點(diǎn)時(shí),直線與圓相交;直線與圓有唯一公共點(diǎn)時(shí),直線與圓相切;直線與圓沒有公共點(diǎn)時(shí),直線與圓相離(2)從點(diǎn)到直線的距離d與半徑r的大小關(guān)系來判斷:dr時(shí),直線與圓相交;dr時(shí),直線與圓相切;dr時(shí),直線與圓相離投影片(§351B)例1已知RtABC的斜邊AB8cm,AC4cm(1)以點(diǎn)C為圓心作圓,當(dāng)半徑為多長時(shí),AB與C相切?(2)以點(diǎn)C為圓心,分別以2cm和4cm的長為半徑作兩個(gè)圓,這兩個(gè)圓與AB分別有怎樣的位置關(guān)系?分析:根據(jù)d與r間的數(shù)量關(guān)系可知:dr時(shí),相切;dr時(shí),相交;dr時(shí),相離3議一議(投影片§351C)

37、(1)你能舉出生活中直線與圓相交、相切、相離的實(shí)例嗎?(2)上圖(1)中的三個(gè)圖形是軸對(duì)稱圖形嗎?如果是,你能畫出它們的對(duì)稱軸嗎?(3)如圖(2),直線CD與O相切于點(diǎn)A,直徑AB與直線CD有怎樣的位置關(guān)系?說一說你的理由對(duì)于(3),小穎和小亮都認(rèn)為直徑AB垂直于CD你同意他們的觀點(diǎn)嗎?師請(qǐng)大家發(fā)表自己的想法生(1)把一只筷子放在碗上,把碗看作圓,筷子看作直線,這時(shí)直線與圓相交;自行車的輪胎在地面上滾動(dòng),車輪為圓,地平線為直線,這時(shí)直線與圓相切;雜技團(tuán)中騎自行車走鋼絲中的自行車車輪為圓,地平線為直線,這時(shí)直線與圓相離(2)圖(1)中的三個(gè)圖形是軸對(duì)稱圖形因?yàn)檠刂鴇所在的直線折疊,直線兩旁的部分

38、都能完全重合對(duì)稱軸是d所在的直線,即過圓心O且與直線l垂直的直線(3)所謂兩條直線的位置關(guān)系,即為相交或平行,相交又分垂直和斜交,直線CD與O相切于點(diǎn)A,直徑AB與直線CD垂直,因?yàn)閳D(2)是軸對(duì)稱圖形,AB是對(duì)稱軸,所以沿AB對(duì)折圖形時(shí),AC與AD重合,因此BACBAD90°師因?yàn)橹本€CD與O相切于點(diǎn)A,直徑AB與直線CD垂直,直線CD是O的切線,因此有圓的切線垂直于過切點(diǎn)的直徑這是圓的切線的性質(zhì),下面我們來證明這個(gè)結(jié)論在圖(2)中,AB與CD要么垂直,要么不垂直假設(shè)AB與CD不垂直,過點(diǎn)O作一條直徑垂直于CD、垂足為M,則OMOA,即圓心O到直線CD的距離小于O的半徑,因此CD與

39、O相交,這與已知條件“直線CD與O相切”相矛盾,所以AB與CD垂直這種證明方法叫反證法,反證法的步驟為第一步假設(shè)結(jié)論不成立;第二步是由結(jié)論不成立推出和已知條件或定理相矛盾第三步是肯定假設(shè)錯(cuò)誤,故結(jié)論成立教學(xué)反思直線和圓的位置關(guān)系(2)教學(xué)內(nèi)容1能判定一條直線是否為圓的切線2會(huì)過圓上一點(diǎn)畫圓的切線3會(huì)作三角形的內(nèi)切圓教學(xué)目標(biāo)探索圓的切線的判定方法,并能運(yùn)用作三角形內(nèi)切圓的方法重難點(diǎn)、關(guān)鍵探索圓的切線的判定方法教學(xué)過程個(gè)人設(shè)計(jì)創(chuàng)設(shè)問題情境,引入新課師上節(jié)課我們學(xué)習(xí)了直線和圓的位置關(guān)系,圓的切線的性質(zhì),懂得了直線和圓有三種位置關(guān)系:相離、相切、相交判斷直線和圓屬于哪一種位置關(guān)系,可以從公共點(diǎn)的個(gè)數(shù)和圓心到直線的距離與半徑作比較兩種方法進(jìn)行判斷,還掌握了圓的切線的性質(zhì)、圓的切線垂直于過切點(diǎn)的直徑由上可知,判斷直線和圓相切的方法有兩種,是否僅此兩種呢?本節(jié)課我們就繼續(xù)探索切線的判定條件新課講解1探索切線的判定條件投影片(§352A)如下圖,AB是O的直徑,直線l經(jīng)過點(diǎn)A,l與AB的夾角,當(dāng)l繞點(diǎn)A旋轉(zhuǎn)時(shí),(1)隨著的變化,點(diǎn)O到l的距離d如何變化?直線l與O的位置關(guān)系如何變化?(2)當(dāng)?shù)扔诙嗌俣葧r(shí),點(diǎn)O到l的距離d等于半徑r?此時(shí),直線l與O有怎樣的位置關(guān)系?為什么?師大家可以先畫一個(gè)圓,并畫出直徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論