2020年中考數(shù)學全真模擬試卷(江蘇南京專用)(三)(全析全解)_第1頁
2020年中考數(shù)學全真模擬試卷(江蘇南京專用)(三)(全析全解)_第2頁
2020年中考數(shù)學全真模擬試卷(江蘇南京專用)(三)(全析全解)_第3頁
2020年中考數(shù)學全真模擬試卷(江蘇南京專用)(三)(全析全解)_第4頁
2020年中考數(shù)學全真模擬試卷(江蘇南京專用)(三)(全析全解)_第5頁
免費預(yù)覽已結(jié)束,剩余10頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2020年中考考前(江蘇南京卷)全真模擬卷(3)數(shù)學(考試時間:120分鐘試卷滿分:120分)注意事項:1 .答卷前,考生務(wù)必將自己的姓名、考生號等填寫在答題卡和試卷指定位置上。2 .回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑。如需改動,用橡 皮擦干凈后,再選涂其他答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上。寫在本試卷上無效。3 .考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題有 6個小題,共2分,滿分12分,在每小題給出的四個選項中,只有一項是符合題目要求的)1 .國家發(fā)改委2月7日緊急下達第二批中央預(yù)算內(nèi)投資2億元人民幣,專項補助承擔重癥感染患者救治

2、任務(wù)的湖北多家重癥治療區(qū)建設(shè),其中數(shù)據(jù)2億用科學記數(shù)法表示為()A. 2X107B. 2X108C. 20X 107D. 0.2X108【解析】解:2億=200 000 000=2 X 108,故選B.2 .下列運算結(jié)果為 a6的是()A. a3?a2B. a9-a3C. (a2) 3 D. a1893【解析】解:A. a3&2=a5,故本選項不合題意;B. a9與-a3不是同類項,所以不能合并,故本選項不合題意;C. (a2) 3=a6,故本選項符合題意;D. a18%3=a15,故本選項不合題意.故選:C.3 .有一個數(shù)值轉(zhuǎn)換器,流程如下:當輸入 x的值為64時,輸出y的值是()A

3、.2B.2 2 C. . 2 D.3 2【解析】解:當輸入 x的值為64時,病=8,是有理數(shù),羽=2,是有理數(shù),我是無理數(shù),輸出,即 y=2,故選:C.4 .若|a2| = 2a,則數(shù)a在數(shù)軸上的對應(yīng)點在()A.表示數(shù)2的點的左側(cè)B.表示數(shù)2的點的右側(cè)C.表示數(shù)2的點或表示數(shù)2的點的左側(cè)D.表示數(shù)2的點或表示數(shù)2的點的右側(cè)【解析】解:: |a-2|=2-a,a- 2<Q 即 a<2所以數(shù)a在數(shù)軸上的對應(yīng)點為表示數(shù) 2的點或表示數(shù)2點的左側(cè).故選:C.5 .實數(shù)a滿足J3 v a<2 J2 ,則a的值不可能是()A. 3B. 55C. 2.8D. 2【解析】解:<琳<

4、;a< 2應(yīng),即73 <a<屜,3= J9, a的值不可能是3,故選:A.6 .如圖,將 ABC繞點C(1,0)旋轉(zhuǎn)180得到 ABC,設(shè)點A的坐標為(a, b),則點A的坐標為()A. ( a, b) B. ( a 2, b) C. ( a 1, b+1) D . ( a, b 2)【解析】解:設(shè) A'的坐標為(m, n),.A和A關(guān)于點C ( 1, 0)對稱.m + a=- 1X2, n+b= 0X2,解得 m= - a-2, n=b.點 A'的坐標(一a-2, b).故選:B.二、填空題(本大題有 10個小題,每小題2分,共20分)7 .如果x與y互為相

5、反數(shù),則x+y=.【解析】解:互為相反數(shù)的兩個數(shù)的和為0,則x+y=0.故答案為:0.8 .計算J3 J6 2舊的結(jié)果是.【解析】解:垂爬2,1 = 3應(yīng)應(yīng)=2,2.故答案為:2.2.9 .分解因式(ab) (a9b) + 4ab的結(jié)果是.【解析】解:(ab) (a9b) + 4ab= a29ab ab+9b2+4ab= a26ab + 9b2= (a 3b) 2故答案為:(a3b) 2.10 .已知x=1是一元二次方程(m-1) x2+x m2=0的一個根,則 m的值是.【解析】解:將 x= 1代入(m1) x2+xm2=0得m1+1 m2=0,解得 m1 = 0, m2=1,-.1 ( m

6、 1) x2+xm2= 0 是一元二次方程,m 1W0,解得mwi,故m的值是0.故答案為:0.11 .如圖,下列推理及所證明中的理由都正確的是 .若AB/ DG,則/ BAC=/ DCA,理由是內(nèi)錯角相等,兩直線平行若AB / DG ,則/ 3=/4,理由是兩直線平行,內(nèi)錯角相等若AE/CF,則/ E = /F,理由是內(nèi)錯角相等,兩直線平行若AE/CF,則/ 3=7 4,理由是兩直線平行,內(nèi)錯角相等解若AB/ DG,則/ BAC=/ DCA,理由是兩直線平行,內(nèi)錯角相等;故錯誤;若AB/ DG,則/ BAC=/ DCA,不是/ 3= / 4,理由是兩直線平行,內(nèi)錯角相等;故錯誤;若AE/CF

7、,則/ E = /F,理由是兩直線平行,內(nèi)錯角相等;故錯誤;若AE/CF,則/ 3=7 4,理由是兩直線平行,內(nèi)錯角相等;正確;故答案為:.12 .如圖,將一根長12厘米的筷子置于底面半徑為3厘米,高為8厘米的圓柱形杯子中,則筷子露在杯子外面的長度至少為 厘米.【解析】解:如圖所示,筷子,圓柱的高,圓柱的直徑正好構(gòu)成直角三角形,勾股定理求得圓柱形水杯的最大線段的長度,即J82 62 =10cm,,筷子露在杯子外面的長度至少為12 10 = 2 cm,故答案為:2.13 .某校男子足球隊的年齡分布如圖所示,則根據(jù)圖中信息可知這些隊員年齡的平均數(shù)是4A數(shù)人【解析】解:根據(jù)圖中信息可知這些隊員年齡的

8、平均數(shù)為:(13+14X 奸 15X8+ 16X3+ 17X2+ 18) + ( 2 + 6+8+ 3+2+1) = 15 (歲),該足球隊共有隊員 2+6+8+3+2+1 = 22 (人),則第11名和第12名的平均年齡即為年齡的中位數(shù),即中位數(shù)為15歲,故答案為:15, 15.14 .如圖,點 O是 ABC的內(nèi)切圓的圓心,若/ A=100 °,則/ BOC為【解析】解:二點 O是4ABC的內(nèi)切圓的圓心,.OB 平分 / ABC, OC 平分 / ACB, ./ OBC= 1 / ABC, Z OCB = 1 Z ACB,22 ./ OBC + Z OCB= 1 (/ ABC+Z

9、ACB) = 1 (180° /A) = 1 ( 180 - 100°) =40°, 222.Z BOC = 180°-Z OBC-Z OCB= 180 - (Z OBC + Z OCB) = 180 40 = 140°.故答案為:140°.15.邊長為1的正方形 ABCD,在BC邊上取一動點 E,連接AE,作EFXAE,交CD邊于點F,若CF的長.3為士,則CE的長為.16【解析】解:.四邊形 ABCD為正方形,b=Z C=90°,BAE+Z AEB=90°. EFXAE, AEF = 90°,/ AE

10、B+/ CEF = 90°, ./ BAE=/CEF,ABEA ECF ,2,尤CF即生",.CE=或ce=3.BA BE 11 CE44,.1.3故答案為:1或3.4416 .如圖,在 ABC中,/ A=45°, / B=60°, AB=4, P是BC邊上的動點(不與 B, C重合),點P關(guān)于 直線AB, AC的對稱點分別為 M, N,則線段MN長的取值范圍是 .【解析】解:連接 AM、AN、AP,過點A作ADMN于點D,如圖所示.點P關(guān)于直線AB, AC的對稱點分別為 M, N,am = ap=an, /mab = /pab, /nac = /pac

11、,. MAN等腰直角三角形,./ AMD = 45°,"1 AD = MD = AM , MN = V2 AM . AB=4, /B=60°, .1- 2 <AP<4, AM = AP,2 66 <MN<4 72 .故答案為:2褥或NV 4 72.三、解答題(本大題有 11個小題,共88分.解答應(yīng)寫出文字說明、證明過程或演算步驟)17 . (7分)已知(x+ 3) (x2+ax+b)的積中不含有x的二次項和一次項,求 a, b的值.【解析】解:原式=x3+ax2+bx+3x2+3ax+3b=x3+ ax2+ 3x2 + 3ax+ bx+ 3

12、b=x3+ ( a+3) x2+ ( 3a+b) x+3b,由題意可知:a+3 = 0,3a+b=0,9 / 14原解得 a= - 3, b= 9.18. (7分)解下列方程:22x2 25【解析】解:去分母得:3x+ 15+4x-20=2,(2) AG = CH.證明:(1)二.四邊形ABCD是平行四邊形,DE = AD2移項合并得:7x= 7,解得:x=1,經(jīng)檢驗x=1是分式方程的解.19. (7分)如圖,在?ABCD中,E、F分別為邊 AD、BC的中點,對角線 AC分別交BE, DF于點G、H.求證:(1)四邊形BEDF為平行四邊形;AD = BC, AD / BC,.E、F分別為邊AD

13、、BC的中點,BF= - BC, DE=BF, DE/BF,2四邊形BEDF為平行四邊形;(2)二四邊形 ABCD是平行四邊形,AD / BC,/ ADF = / CFH , / EAG = / FCH ,.E、F分別為AD、BC邊的中點,.AE=DE= 1AD, CF=BFBC,,DE/BF, DE = BF, 22四邊形BFDE是平行四邊形,BE/DF, ./ AEG = /ADF , AEG=/ CFH ,在 AEG和 CFH中,/EAG = /FCH, AE=CF, /AEG = /CFH, AEGACFH (ASA),,AG = CH.20. (8分)有一家糖果加工廠,它們要對一款奶

14、糖進行包裝,要求每袋凈含量為100g.現(xiàn)使用甲、乙兩種包裝機同時包裝100g的糖果,從中各抽出袋,測得實際質(zhì)量(g)如下:甲:101, 102, 99, 100, 98, 103, 100, 98, 100, 99乙:100, 101 , 100, 98, 101, 97, 100, 98, 103, 102(1)分別計算兩組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);(2)要想包裝機包裝奶糖質(zhì)量比較穩(wěn)定,你認為選擇哪種包裝機比較適合?簡述理由.【解析】解:(1)甲的平均數(shù)為: (101 + 102+99+100+98 + 103+ 100+ 98+ 100+ 99) = 100;101乙的平均數(shù)為:(100

15、+ 101+ 100+98+ 101 + 97+ 100+98+103+ 102) = 100;10甲中數(shù)據(jù)從小到大排列為:98, 98, 99, 99, 100, 100, 100, 101, 102, 103故甲的中位數(shù)是:100,甲的眾數(shù)是100,乙中數(shù)據(jù)從小到大排列為:97, 98, 98, 100, 100, 100, 101, 101, 102, 103故乙的中位數(shù)是:100,乙的眾數(shù)是100;(2)甲的方差為:S甲 2=( 101 100) 2+ ( 102 100) 2+ ( 99 100) 2+ ( 100 100) 2+ (98 100)102+ ( 103 100) 2+

16、 ( 100 100) 2+ ( 980) 2+ ( 100 100) 2+ ( 98 100) 2=2.4;乙的方差為: S 乙 2= 1 ( 100 100) 2+ ( 101 100) 2+ ( 100 100) 2+ ( 98 100) 2+ ( 101 100) 10十 ( 97 100) 2+ ( 100 100) 2+ ( 98 100) 2+ ( 103 100) 2+ ( 102 100) 2=3.2,S甲2 VS乙2, 選擇甲種包裝機比較合適.21. (8分)一個不透明的布袋里裝有2個白球和2個紅球,它們除顏色外其余都相同.(1)從中任意摸出1個球,則摸到紅球的概率是 ;(

17、2)先從布袋中摸出1個球后不放回,再摸出 1個球,請用列表或畫樹狀圖等方法求出兩次摸到的球是同色的概率.【解析】解:(1)二.不透明的布袋里裝有 2個白球和2個紅球個4個球, 21 摸到紅球的概率是 -=1 ;42,1故答案為:1;2(2)畫樹狀圖得:開培紅 虹 白 白ZN /4 /N /1江白白紅白白江紅白紅紅白 共有12種等可能的結(jié)果,其中兩次摸到的球是同色的有4種情況,41 .兩次摸到的球是同色的概率為=1 .12322. (7分)如圖,有一座圓弧形拱橋,它的跨度 AB為60m,拱高PM為18m,當洪水泛濫到跨度只有 30m時,就要采取緊急措施,某次洪水中,拱頂離水面只有4m,即PN =

18、 4m時,試通過計算說明是否需要采取緊急措施.【解析】解:設(shè)圓弧所在圓的圓心為O,連接OA、OA ;設(shè)半徑為x米,則OA=OA'= OP,由垂徑定理知 AM = BM, AN=BN,.AB=60 米,AM = 30,且 OM = OPPM= (x18),RtAOM中,由勾股定理可得 AO2=OM2 + AM2,即 x2= (x 18) 2+ 302,解得 x= 34, . ON= OPPN=344=30,RtAON 中,由勾股定理可得 A'N2 = OA2ON2 = 342 302 = 64 X 4,則 AN=16, . AB = 32> 30, ,不需要采取緊急措施.2

19、3. (8分)一次函數(shù) yi = kx+3與正比例函數(shù) y2= 2x交于點A (1, 2).(1)確定一次函數(shù)表達式;(2)當x取何值時,yi<0?(3)當x取何值時,yi>y2?【解析】解:(1)由已知,將點A (1, 2)代入yi = kx+3得 2= k+ 3,解得:k=1,故一次函數(shù)表達式為:y1 = x+ 3;(2)由(1)得,令 yK0,得 x+ 3< 0,解得 x< 3.所以,當 x< - 3, yK0.(3) y1>y2,,x+3>2x,解彳導:x> 1,當 x> - 1, y1>y2.24. (8分)如圖,某數(shù)學社團

20、成員想利用所學的知識測量廣告牌的高度(即圖中線段MN的長),在地面A處測得點M的仰角為60°、點N的仰角為45°,在B處測得點M的仰角為30°, AB=5m, MNAB于點P, 且B、A、P三點在同一直線上.求廣告牌 MN的長(結(jié)果保留根號).PA= PN【解析】解:二.在 RtAAPN中,/ NAP = 45°,在 RtAAPM 中,tan/ MAP= MPAP設(shè) PA= PN = x 米,. /MAP = 60°, . MP = AP?tan/MAP= 73x,在 RtA BPM 中,tan/ MBP= MP , BP. / MBP = 3

21、0°, AB=5, lx ,x=-,符合題意,3x52mn = mp-np= 73x-x=53 5 (米), 2答:廣告牌MN的長為5 5米.225. (8分)如圖,某小區(qū)規(guī)劃在一個長16m,寬9m的矩形場地ABCD上,修建同樣寬的小路,使其中兩條與AB平行,另一條與 AD平行,其余部分種草,若草坪部分總面積為112m2,求小路的寬.【解析】解:設(shè)小路的寬度為xm,根據(jù)題意得(16 2x) (9x) = 112,解得 x1 = 1, x2= 16.-16>9, x= 16不符合題意,舍去,x= 1 .答:小路的寬為1m.26. (9 分)如圖,4ABC 中 AB=AC, BC=

22、 6,點 D 位 BC 中點,連接 AD,AD = 4, AN 是 ABC 外角/ CAM 的平分線,CEXAN,垂足為E.(1)試判斷四邊形 ADCE的形狀并說明理由.(2)將四邊形ADCE沿CB以每秒1個單位長度的速度向左平移,設(shè)移動時間為t (04W6)秒,平移后的四邊形ADCE與 ABC重疊部分的面積為 S,求S關(guān)于t的函數(shù)表達式,并寫出相應(yīng)的t的取值范圍.B D C13 / 14原【解析】解:(1) . AB=AC, D為BC中點, ADXBC, /BAD=/CAD,又. AE 平分/ CAM , ./ MAE = / CAE,DAE = Z DAC + Z CAE= 1 X 180

23、= 90°, . . / AEC=Z DAE=Z ADC = 90°,2四邊形ADCE為矩形.(2)平移過程中有兩種不同情況:當oq<3時,重疊部分為五邊形,設(shè)CE與AC交于點P, A'D與AB交于點Q,1 .EP= 4AE= 4 (3-1) AQ= 4AA= 4t, 33332 .S= S矩形 A D CE SaAA Q - SaAE P= 3X4- 1 AA,AQ IaE,EP 22= 12- 1t?3-1 (3-1) ?- (3-t) = - 4t2+4t+6;2 3233當34W6時,重疊部分為三角形,設(shè)AB與C E交于點R, C'E7/ AD

24、, . BCRA BDA,C'R AD BC = 6-t,CR=BC' DB44 (6-t),3 ' S= Sabcr= Bc BC 7 CR= (6-t) ? (6-t)22.=2 (6 t) 2,34 2t2 4t 6 0S=32 6 t 2 3 t323t 6.627. (11分)已知:在平面直角坐標系xOy中,點A (xi, yi)、B (x2, y2)是某函數(shù)圖象上任意兩點(xivX2),將函數(shù)圖象中xvxi的部分沿直y=yi作軸對稱,x>x2的部分沿直線y=y2作軸對稱,與原函數(shù)圖象中xia蟲2的部分組成了一個新函數(shù)的圖象,稱這個新函數(shù)為原函數(shù)關(guān)于點A、B的 雙對稱函數(shù)例如:如圖,點 A ( 2, i)、B ( i, 2)是一次函數(shù)y= x+ i圖象上的兩個點,則函數(shù)y= x+i關(guān)于點A、B的 雙對稱函數(shù)”的圖象如圖所示.,3 一(i)點A(t,yi)、B (t+3,y2)是函數(shù)y=圖象上的兩點,y= 3x關(guān)于點A、B的 雙對稱函數(shù)的圖象x記作G,若G是中心對稱圖形,直接寫出t的值.(2)點P (工,yi), Q (1+t, V2是二次函數(shù)y= (xt) 2 + 2t圖象上的兩點,該二次函數(shù)關(guān)于點P、22Q的雙對稱函數(shù)”記作f.求P、Q兩點的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論