版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、工程問題在日常生活中,做某一件事,制造某種產(chǎn)品,完成某項任務(wù),完成某項工程等等,都要涉及到工作量、工作效率、工作時間這三個量,它們之間的基本數(shù)量關(guān)系是 工作量=工作效率×時間.在小學(xué)數(shù)學(xué)中,探討這三個數(shù)量之間關(guān)系的應(yīng)用題,我們都叫做“工程問題”.舉一個簡單例子.一件工作,甲做10天可完成,乙做15天可完成.問兩人合作幾天可以完成?一件工作看成1個整體,因此可以把工作量算作1.所謂工作效率,就是單位時間內(nèi)完成的工作量,我們用的時間單位是“天”,1天就是一個單位,再根據(jù)基本數(shù)量關(guān)系式,得到所需時間=工作量÷工作效率=6(天)·兩人合作需要6天.這是工程問題中最基本的問
2、題,這一講介紹的許多例子都是從這一問題發(fā)展產(chǎn)生的.為了計算整數(shù)化(盡可能用整數(shù)進(jìn)行計算),如第三講例3和例8所用方法,把工作量多設(shè)份額.還是上題,10與15的最小公倍數(shù)是30.設(shè)全部工作量為30份.那么甲每天完成3份,乙每天完成2份.兩人合作所需天數(shù)是30÷(3+ 2)= 6(天)數(shù)計算,就方便些.2.或者說“工作量固定,工作效率與時間成反比例”.甲、乙工作效率的比是1510=32.當(dāng)知道了兩者工作效率之比,從比例角度考慮問題,也需時間是因此,在下面例題的講述中,不完全采用通常教科書中“把工作量設(shè)為整體1”的做法,而偏重于“整數(shù)化”或“從比例角度出發(fā)”,也許會使我們的解題思路更靈活一
3、些.一、兩個人的問題標(biāo)題上說的“兩個人”,也可以是兩個組、兩個隊等等的兩個集體.例1 一件工作,甲做9天可以完成,乙做6天可以完成.現(xiàn)在甲先做了3天,余下的工作由乙繼續(xù)完成.乙需要做幾天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9與6的最小公倍數(shù)是18.設(shè)全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需時間是(18- 2 × 3)÷ 3= 4(天).解三:甲與乙的工作效率之比是6 9= 2 3.甲做了3天,相當(dāng)于乙做了2天.乙完成余下工作所需時間是6-2=4(天).例2 一件工作,甲、乙兩人合作30天可以完成,共同做了6天后,甲離開了,由
4、乙繼續(xù)做了40天才完成.如果這件工作由甲或乙單獨完成各需要多少天?解:共做了6天后,原來,甲做 24天,乙做 24天,現(xiàn)在,甲做0天,乙做40=(24+16)天.這說明原來甲24天做的工作,可由乙做16天來代替.因此甲的工作效率如果乙獨做,所需時間是如果甲獨做,所需時間是答:甲或乙獨做所需時間分別是75天和50天.例3 某工程先由甲獨做63天,再由乙單獨做28天即可完成;如果由甲、乙兩人合作,需48天完成.現(xiàn)在甲先單獨做42天,然后再由乙來單獨完成,那么乙還需要做多少天?解:先對比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20
5、(天),由此得出甲的甲先單獨做42天,比63天少做了63-42=21(天),相當(dāng)于乙要做因此,乙還要做28+28= 56 (天).答:乙還需要做 56天.例4 一件工程,甲隊單獨做10天完成,乙隊單獨做30天完成.現(xiàn)在兩隊合作,其間甲隊休息了2天,乙隊休息了8天(不存在兩隊同一天休息).問開始到完工共用了多少天時間?解一:甲隊單獨做8天,乙隊單獨做2天,共完成工作量余下的工作量是兩隊共同合作的,需要的天數(shù)是2+8+ 1= 11(天).答:從開始到完工共用了11天.解二:設(shè)全部工作量為30份.甲每天完成3份,乙每天完成1份.在甲隊單獨做8天,乙隊單獨做2天之后,還需兩隊合作(30- 3
6、5; 8- 1× 2)÷(3+1)= 1(天).解三:甲隊做1天相當(dāng)于乙隊做3天.在甲隊單獨做 8天后,還余下(甲隊) 10-8= 2(天)工作量.相當(dāng)于乙隊要做2×3=6(天).乙隊單獨做2天后,還余下(乙隊)6-2=4(天)工作量.4=3+1,其中3天可由甲隊1天完成,因此兩隊只需再合作1天.例5 一項工程,甲隊單獨做20天完成,乙隊單獨做30天完成.現(xiàn)在他們兩隊一起做,其間甲隊休息了3天,乙隊休息了若干天.從開始到完成共用了16天.問乙隊休息了多少天?解一:如果16天兩隊都不休息,可以完成的工作量是由于兩隊休息期間未做的工作量是乙隊休息期間未做的工作量是乙隊
7、休息的天數(shù)是答:乙隊休息了5天半.解二:設(shè)全部工作量為60份.甲每天完成3份,乙每天完成2份.兩隊休息期間未做的工作量是(3+2)×16- 60= 20(份).因此乙休息天數(shù)是(20- 3 × 3)÷ 2= 5.5(天).解三:甲隊做2天,相當(dāng)于乙隊做3天.甲隊休息3天,相當(dāng)于乙隊休息4.5天.如果甲隊16天都不休息,只余下甲隊4天工作量,相當(dāng)于乙隊6天工作量,乙休息天數(shù)是16-6-4.5=5.5(天).例6 有甲、乙兩項工作,張單獨完成甲工作要10天,單獨完成乙工作要15天;李單獨完成甲工作要 8天,單獨完成乙工作要20天.如果每項工作都可以由兩人合作,那么這兩
8、項工作都完成最少需要多少天?解:很明顯,李做甲工作的工作效率高,張做乙工作的工作效率高.因此讓李先做甲,張先做乙.設(shè)乙的工作量為60份(15與20的最小公倍數(shù)),張每天完成4份,李每天完成3份.8天,李就能完成甲工作.此時張還余下乙工作(60-4×8)份.由張、李合作需要(60-4×8)÷(4+3)=4(天).8+4=12(天).答:這兩項工作都完成最少需要12天.例7 一項工程,甲獨做需10天,乙獨做需15天,如果兩人合作,他要8天完成這項工程,兩人合作天數(shù)盡可能少,那么兩人要合作多少天?解:設(shè)這項工程的工作量為30份,甲每天完成3份,乙每天完成2份.兩人合作,
9、共完成3× 0.8 + 2 × 0.9= 4.2(份).因為兩人合作天數(shù)要盡可能少,獨做的應(yīng)是工作效率較高的甲.因為要在8天內(nèi)完成,所以兩人合作的天數(shù)是(30-3×8)÷(4.2-3)=5(天).很明顯,最后轉(zhuǎn)化成“雞兔同籠”型問題.例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比單獨做時如果這件工作始終由甲一人單獨來做,需要多少小時?解:乙6小時單獨工作完成的工作量是乙每小時完成的工作量是兩人合作6小時,甲完成的工作量是甲單獨做時每小時完成的工作量甲單獨做這件工作需要的時間是答:甲單獨完成這件工作需要33小時.這一節(jié)的多數(shù)例題都進(jìn)行了“整數(shù)化”的
10、處理.但是,“整數(shù)化”并不能使所有工程問題的計算簡便.例8就是如此.例8也可以整數(shù)化,當(dāng)求出乙每有一點方便,但好處不大.不必多此一舉.二、多人的工程問題我們說的多人,至少有3個人,當(dāng)然多人問題要比2人問題復(fù)雜一些,但是解題的基本思路還是差不多.例9 一件工作,甲、乙兩人合作36天完成,乙、丙兩人合作45天完成,甲、丙兩人合作要60天完成.問甲一人獨做需要多少天完成?解:設(shè)這件工作的工作量是1.甲、乙、丙三人合作每天完成減去乙、丙兩人每天完成的工作量,甲每天完成答:甲一人獨做需要90天完成.例9也可以整數(shù)化,設(shè)全部工作量為180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完
11、成3份.請試一試,計算是否會方便些?例10 一件工作,甲獨做要12天,乙獨做要18天,丙獨做要24天.這件工作由甲先做了若干天,然后由乙接著做,乙做的天數(shù)是甲做的天數(shù)的3倍,再由丙接著做,丙做的天數(shù)是乙做的天數(shù)的2倍,終于做完了這件工作.問總共用了多少天?解:甲做1天,乙就做3天,丙就做3×2=6(天).說明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了2+6+12=20(天).答:完成這項工作用了20天.本題整數(shù)化會帶來計算上的方便.12,18,24這三數(shù)有一個易求出的最小公倍數(shù)72.可設(shè)全部工作量為72.甲每天完成6,乙每天完成4,丙
12、每天完成3.總共用了例11 一項工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙兩人合作1天.問這項工程由甲獨做需要多少天?解:丙2天的工作量,相當(dāng)乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,與乙做4天一樣.也就是甲做1天,相當(dāng)于乙做3天,甲的工作效率是乙的工作效率的3倍.他們共同做13天的工作量,由甲單獨完成,甲需要答:甲獨做需要26天.事實上,當(dāng)我們算出甲、乙、丙三人工作效率之比是321,就知甲做1天,相當(dāng)于乙、丙合作1天.三人合作需13天,其中乙、丙兩人完成的工作量,可轉(zhuǎn)化為甲再做13天來完成.例12 某項工
13、作,甲組3人8天能完成工作,乙組4人7天也能完成工作.問甲組2人和乙組7人合作多少時間能完成這項工作?解一:設(shè)這項工作的工作量是1.甲組每人每天能完成乙組每人每天能完成甲組2人和乙組7人每天能完成答:合作3天能完成這項工作.解二:甲組3人8天能完成,因此2人12天能完成;乙組4人7天能完成,因此7人4天能完成.現(xiàn)在已不需顧及人數(shù),問題轉(zhuǎn)化為:甲組獨做12天,乙組獨做4天,問合作幾天完成?小學(xué)算術(shù)要充分利用給出數(shù)據(jù)的特殊性.解二是比例靈活運(yùn)用的典型,如果你心算較好,很快就能得出答數(shù).例13 制作一批零件,甲車間要10天完成,如果甲車間與乙車間一起做只要6天就能完成.乙車間與丙車間一起做,需要8天
14、才能完成.現(xiàn)在三個車間一起做,完成后發(fā)現(xiàn)甲車間比乙車間多制作零件2400個.問丙車間制作了多少個零件?解一:仍設(shè)總工作量為1.甲每天比乙多完成因此這批零件的總數(shù)是丙車間制作的零件數(shù)目是答:丙車間制作了4200個零件.解二:10與6最小公倍數(shù)是30.設(shè)制作零件全部工作量為30份.甲每天完成 3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是1614=87.已知甲、乙工作效率之比是 32= 128.綜合一起,甲、乙、丙三人工作效率之比是1287.當(dāng)三個車間一起做時,丙制作的零件個數(shù)是2400÷(12- 8) × 7= 4200(個).例14 搬運(yùn)一個倉庫的貨物,甲需要10小時,乙需要12小時,丙需要15小時.有同樣的倉庫A和B,甲在A倉庫、乙在B倉庫同時開始搬運(yùn)貨物,丙開始幫助甲搬運(yùn),中途又轉(zhuǎn)向幫助乙搬運(yùn).最后兩個倉庫貨物同時搬完.問丙幫助甲、乙各多少時間?解:設(shè)搬運(yùn)一個倉庫的貨物的工作量是1.現(xiàn)在相當(dāng)于三人共同完成工
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度二零二五年度房屋拆除與拆除廢棄物綜合利用合同3篇
- 2024景觀工程技術(shù)咨詢與服務(wù)協(xié)議指南版B版
- 二零二五年度抵押反擔(dān)保法律援助與執(zhí)行合同3篇
- 2025年度特種圍墻欄桿工程設(shè)計、生產(chǎn)與安裝合同3篇
- 二零二五年度新能源汽車推廣承諾合同范本3篇
- 二零二五年度新能源設(shè)備廉潔采購與性能檢測合同3篇
- 2025年度混凝土預(yù)制構(gòu)件模具設(shè)計與租賃合同3篇
- 二零二五年度地下綜合雨水收集系統(tǒng)安裝合同規(guī)范2篇
- 2024版農(nóng)業(yè)貸款合同協(xié)議范本3篇
- 2025年度建筑垃圾處理與報廢材料再利用協(xié)議書3篇
- 2024年6月浙江高考?xì)v史試卷(含答案解析)
- 保密工作會議領(lǐng)導(dǎo)講話稿
- 九年級英語教學(xué)反思
- DB6101-T 3196-2024 生活無著的流浪乞討人員站內(nèi)救助服務(wù)規(guī)范
- 外研新標(biāo)準(zhǔn)初中英語七年級上冊冊寒假提升補(bǔ)全對話短文練習(xí)三附答案解析
- 貨物采購供貨方案(技術(shù)方案)
- 《旅游消費者行為學(xué)》-課程教學(xué)大綱
- YY/T 1117-2024石膏繃帶
- 《企業(yè)人力資源管理師》課件-2.1人員招聘的程序與信息發(fā)布
- 【魔鏡洞察】2024藥食同源保健品滋補(bǔ)品行業(yè)分析報告
- 2024年人教版初一語文(上冊)期末試卷及答案(各版本)
評論
0/150
提交評論