2020-2021學(xué)年新教材人教B版必修第二冊(cè)第五章統(tǒng)計(jì)與概率單元測(cè)試_第1頁(yè)
2020-2021學(xué)年新教材人教B版必修第二冊(cè)第五章統(tǒng)計(jì)與概率單元測(cè)試_第2頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、2020-2021 學(xué)年新教材人教 B 版必修第二冊(cè)第五章統(tǒng)計(jì)與概率單元測(cè)試(時(shí)間:120 分鐘滿分 150 分)一、單項(xiàng)選擇題(本大題共 8 小題,每小題 5 分,共 40 分.在每小題給出的四個(gè)選項(xiàng)中, 只有一項(xiàng)是符合題目要求的)1 老師為研究男女同學(xué)數(shù)學(xué)學(xué)習(xí)的差異情況,對(duì)某班50 名同學(xué)(其中男同學(xué) 30 名,女同學(xué) 20 名)采取分層抽樣的方法,抽取一個(gè)容量為10 的樣本進(jìn)行研究,則女同學(xué)甲被抽到的概率為(C )1A. 50B.101C. 5D.-4解析因?yàn)樵诜謱映闃又?,任何個(gè)體被抽到的概率均相等,所以女同學(xué)甲被抽到的概 率 P=故應(yīng)選 C 5052若某校高一年級(jí) 8 個(gè)班參加合唱比賽

2、的得分如莖葉圖所示,則這組數(shù)據(jù)的中位數(shù)和 平均數(shù)分別是(A )899 7316 4 0 2A . 91.5 和 91.5C. 91 和 91.5A.3學(xué)校為了調(diào)查學(xué)生在課外讀物方面的支出情況,抽出了一個(gè)容量為 n 且支出在20,60)元的樣本,其頻率分布直方圖如圖所示,根據(jù)此圖估計(jì)學(xué)生在課外讀物方面的支出費(fèi)用的中位數(shù)為()元(C )B .91.5 和92解析將這組數(shù)據(jù)從小到大排列,得87、 89、 90、 91、 92、 93、 94、96.故平均數(shù)87+ 89+ 90+ 91 + 92+ 93+ 94+ 96891.5, 中位數(shù)為91+ 922=91.5,故選4.下列說(shuō)法中,正確的是(B )

3、A .數(shù)據(jù) 5,4,4,3,5,2 的眾數(shù)是 4B 一組數(shù)據(jù)的標(biāo)準(zhǔn)差的平方是這組數(shù)據(jù)的方差C.數(shù)據(jù) 2,3,4,5 的方差是數(shù)據(jù) 4,6,8,10 的方差的一半D 頻率分布直方圖中各小矩形的面積等于相應(yīng)各組的頻數(shù)解析A 中的眾數(shù)是 4 和 5;C 中,2,3,4,5 的方差為 1.25,而數(shù)據(jù) 4,6,8,10 的方差為 5;D 中,頻率分布直方圖中各小矩形的面積等于相應(yīng)各組的頻率.5.從 10 個(gè)事件中任取一個(gè)事件,若這個(gè)事件是必然事件的概率為0.2,是不可能事件的概率為 0.3,則這 10 個(gè)事件中隨機(jī)事件的個(gè)數(shù)是(C )A . 3B . 4C. 5D. 6解析這 10 個(gè)事件中,必然事件

4、的個(gè)數(shù)為10X0.2= 2,不可能事件的個(gè)數(shù)為10X0.3=3而必然事件、不可能事件、隨機(jī)事件是彼此互斥的事件,且它們的個(gè)數(shù)和為10.故隨機(jī)事件的個(gè)數(shù)為 10 2- 3 = 5.6.口袋內(nèi)有一些大小相同的紅球、黃球和白球,從中任意摸出一球,摸出的球是紅球或黃球的概率為0.4,摸出的球是紅球或白球的概率為0.9 ,那么摸出的球是黃球或白球的概率為(A )A . 0.7B . 0.5C. 0.3D. 0.6C.4009解析40+10X0.16_0.36=400v.D. 46解析任意摸出一球,事件 A= “摸出紅球”,事件 B= “摸出黃球”,事件 C= “摸 出白球”,則 A、B、C 兩兩互斥.由

5、題設(shè) P(A LB) = P(A) + P(B) = 0.4,P(AUC)= P(A) + P(C) = 0.9,又 P(ALB UC)= P(A) + P(B) + P(C) = 1,P(A)= 0.4+ 0.9 1 = 0.3 ,P(B UC) = 1 P(A) = 1 0.3= 0.7 .7.在 5 件產(chǎn)品中, 有 3 件一等品和2 件二等品,從中任取2 件,以琉為概率的事件是(C )A .恰有 2 件一等品B.至少有一件一等品C.至多有一件一等品D 都不是一等品解析將 3 件一等品編號(hào)為 1,2,3; 2 件二等品編號(hào)為 4,5.從中任取 2 件有 10 種取法:(1,2), (1,3

6、), (1,4), (1,5), (2,3), (2,4), (2,5) , (3,4), (3,5), (4,5).其中恰含有1 件一等品的取法有: (1,4), (1,5), (2,4), (2,5), (3,4), (3,5),恰有 1 件一等品的概率為P1= %;恰有2 件一等品的取法有:3(1,2), (1,3), (2,3),故恰有 2 件一等品的概率為P2=石,其對(duì)立事件&甲、乙兩位同學(xué)各拿出 6 張游戲牌,用作投骰子的獎(jiǎng)品,兩人商定:骰子朝上的面 的點(diǎn)數(shù)為奇數(shù)時(shí)甲得 1 分,否則乙得 1 分,先積得 3 分者獲勝,得所有 12 張游戲牌,并結(jié) 束游戲比賽開(kāi)始后,甲積 2

7、 分,乙積 1 分,這時(shí)因意外事件中斷游戲,以后他們不想再繼 續(xù)這場(chǎng)游戲,下面對(duì)這 12 張游戲牌的分配合理的是(A )A 甲得 9 張,乙得 3 張B 甲得 6 張,乙得 6 張C.甲得 8 張,乙得 4 張D 甲得 10 張,乙得 2 張1解析由題意,得骰子朝上的面的點(diǎn)數(shù)為奇數(shù)的概率為2 即甲、乙每局得分的概率相等,所以甲獲勝的概率是 2+1=4,1 1 1P(3) = P(11)=秸,P(4) = P(10)=右,P(5) = P(9)=1519, P(6) = P(8) = 36, P=6,故選 BCD .是“至多有 1 件一等品”,概率為P3= 1 P2= 1 3P2 10710.乙

8、獲勝的概率是孑 2=4.31所以甲得到的游戲牌為 12X4= 9(張),乙得到的游戲牌為 12X-=3(張).二、多項(xiàng)選擇題(本大題共 4 小題,每小題 5 分,共 20 分,在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)是符合題目要求的全部選對(duì)的得5 分,選對(duì)但不全的得 3 分,有選錯(cuò)的得 0 分)9.下列事件中,是隨機(jī)事件的是(AC )A . 2021 年 8 月 18 日,北京市不下雨B .在標(biāo)準(zhǔn)大氣壓下,水在4 C 時(shí)結(jié)冰C.從標(biāo)有 1,2,3,4 的 4 張?zhí)柡炛腥稳∫粡垼? 號(hào)簽D .若 x R,貝 U x* 2012 .在某地區(qū)某高傳染性病毒流行期間,為了建立指標(biāo)顯示疫情已受控制,以便向該

9、地區(qū)居民顯示可以過(guò)正常生活, 有公共衛(wèi)生專家建議的指標(biāo)是“連續(xù)7 天每天新增感染人數(shù)不超過(guò) 5 人”,根據(jù)連續(xù) 7 天的新增病例數(shù)計(jì)算,下列各項(xiàng)中,一定符合上述指標(biāo)的是(CD )A .平均數(shù)x 3B. 標(biāo)準(zhǔn)差 sw2C. 平均數(shù)x w3 且極差小于或等于 2D .眾數(shù)等于 1 且極差小于或等于 4解析A 中平均數(shù) xw3,可能是第一天 0 人,第二天 6 人,不符合題意;B 中每天解析AC 為隨機(jī)事件,B 為不可能事件,D 為必然事件.10有甲、乙兩種報(bào)紙供市民訂閱,記事件E 為“只訂甲報(bào)紙”,事件 F為“至一種報(bào)紙”,事件 G 為“至多訂一種報(bào)紙”,事件H 為“不訂甲報(bào)紙”,事件I 為“一種

10、報(bào)紙也不訂”.下列命題正確的是(BC )A . E 與 G 是互斥事件B.F 與 I 是互斥事件,且是對(duì)立事件C.F 與 G 不是互斥事件D . G 與 I 是互斥事件感染的人數(shù)均為 10,標(biāo)準(zhǔn)差也是 0,顯然不符合題意;C 符合,若極差等于 0 或 1,在 x 3的條件下,顯然符合指標(biāo);若極差等于2 且&3,則每天新增感染人數(shù)的最小值與最大值有下列可能:(1)0,2 ,(2)1,3 ,(3)2,4,符合指標(biāo).D 符合,若眾數(shù)等于 1 且極差小于或等于 4, 則最大值不超過(guò) 5,符合指標(biāo).三、填空題(本大題共 4 小題,每小題 5 分,共 20 分,把答案填在題中的橫線上)13.某校甲

11、、乙兩個(gè)班級(jí)各有 5 名編號(hào)為 1,2,3,4,5 的學(xué)生進(jìn)行投籃練習(xí),每人投 10 次,投中的次數(shù)如下表:學(xué)生1 號(hào)2 號(hào)3 號(hào)4 號(hào)5 號(hào)甲班67787乙班676792貝 y 以上兩組數(shù)據(jù)的方差中較小的一個(gè)為s2=_2 .-1 2解析x甲=7,靜=5X(12+ 02+ 02+ 12+ 02)= 5 ;7乙=7,sl=1X(12+02+12+02+22)=6.552S甲Vs乙,方差中較小的一個(gè)為 S甲,即 s2=2.5解析A . E 與 G 不是互斥事件;B . F 與I 是互斥事件,且是對(duì)立事件;不是互斥事11.某年級(jí)有有人提議:擲兩個(gè)骰子,得到的點(diǎn)數(shù)之和是幾就選幾班,這種做法(BCD )

12、1A .每個(gè)班被選到的概率都為12B . 4 班和 10 班被選到的概率都為丄12C . 2 班和 12 班被選到的概率最小D . 7 班被選到的概率最大1解析P(1) = 0, P(2) = P(12) = 36,14.如圖, 從 2014 年參加南京青奧會(huì)知識(shí)競(jìng)賽的學(xué)生中抽出60 名,將其成績(jī)(均為整數(shù))整理后畫(huà)出的頻率分布直方圖如圖所示觀察圖形,估計(jì)這次奧運(yùn)知識(shí)競(jìng)賽的及格率(大于或等于 60 分為及格)為 0.75.th事解析及格率為 1-(0.01 + 0.015)X10= 0.75.215.從字母 a, b, c, d, e 中任取兩個(gè)不同字母,則取到字母a 的概率為_(kāi)5.解析基本事

13、件總數(shù)有 10 個(gè),即(a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b,e), (c, d), (c, e), (d, e),其中含 a 的基本事件有(a, b), (a, c), (a, d) , (a , e),共 4 42個(gè),故由古典概型知所求事件的概率P= =;.10516.某電子商務(wù)公司對(duì) 10 000 名網(wǎng)絡(luò)購(gòu)物者在 2019 年度的消費(fèi)情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)消 費(fèi)金額(單位:萬(wàn)元)都在區(qū)間0.3,0.9內(nèi),其頻率分布直方圖如圖所示.在這些購(gòu)物者中,消費(fèi)金額在區(qū)間0.5,0.9內(nèi)的購(gòu)物者的人數(shù)為 6 0002X0.1 + 2.5X0.

14、1 + ax0.1 = 1,解得 a = 3.(2)消費(fèi)金額在區(qū)間0.5,0.9內(nèi)的頻率為 0.2X0.1 + 0.8X0.1 + 2X0.1 + 3X0.1 = 0.6,所以 消費(fèi)金額在區(qū)間0.5,0.9內(nèi)的購(gòu)物者的人數(shù)為0.6X10 000 = 6 000.四、解答題(本大題共 6 個(gè)小題,共 70 分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)17.(本小題滿分 10 分)某人去開(kāi)會(huì),他乘火車、輪船、汽車、飛機(jī)去的概率分別為0.3,0.2,0.1,0.4.(1) 求他乘火車或乘飛機(jī)去的概率;(2) 若他去的概率為 0.5,請(qǐng)問(wèn)他有可能是乘何種交通工具去的?解析設(shè)乘火車去開(kāi)會(huì)為事件A,乘輪船

15、去開(kāi)會(huì)為事件 B, 乘汽車去開(kāi)會(huì)為事件 C, 乘飛機(jī)去開(kāi)會(huì)為事件 D, 則這四個(gè)事件是互斥事件.(1)P(A + D)= P(A)+ P(D) = 0.3+ 0.4= 0.7 .(2) -.0.5= 0.2+ 0.3= 0.1 + 0.4,他可能乘的交通工具為火車或輪船,汽車或飛機(jī).18.(本小題滿分 12 分)為了估計(jì)一次性木質(zhì)筷子的用量,2017 年從某市共 600 家高、中、低檔飯店中抽取10 家進(jìn)行調(diào)查,得到這些飯店每天消耗的一次性筷子盒數(shù)分別為0.6,3.7,2.2,1.5,2.8,1.7,2.1,123.2,1.0 .(1)通過(guò)對(duì)樣本的計(jì)算, 估計(jì)該市 2017 年共消耗了多少盒一

16、次性筷子.(每年按 350 個(gè)營(yíng)解析(1)由頻率分布直方圖及頻率和等于1 可得 0.2X0.1 + 0.8X0.1 + 1.5X0.1 +直方圖中的 a =業(yè)日計(jì)算)(2) 2019 年又對(duì)該市一次性木筷的用量以同樣的方式做了抽樣調(diào)查,調(diào)查結(jié)果是 10 家飯店平均每家每天使用一次性筷子2.42 盒,求該市 2018 年,2019 年這兩年一次性木質(zhì)筷子用量平均每年增長(zhǎng)的百分率.(3) 假如讓你統(tǒng)計(jì)你所在省一年使用一次性木質(zhì)筷子所消耗的木材量,如何利用統(tǒng)計(jì)知 識(shí)去做?簡(jiǎn)單地說(shuō)明你的做法.1解析(1)樣本平均數(shù)為 x =喬(0.6 + 3.7+ 2.2 + 1.5+ 2.8+ 1.7 + 2.1

17、+ 1.2+ 3.2 + 1.0)=2= 2.10由樣本平均數(shù)為 2 估計(jì)總體平均數(shù)也是 2,故 2017 年該市 600 家飯店共消耗了一次性 筷子為 2X350X600= 420 000(盒).(2) 由于 2017 一次性筷子用量是平均每天2 盒,而 2019 年用量是平均每天 2.42 盒,設(shè)平均每年增長(zhǎng)的百分率為x,依題意有 2.42 = 2X(1 + x)3 4,解得 x= 0.1 = 10%(x = 2.1 舍去),所以該市 2018 年,2019 年這兩年一次性木質(zhì)筷子的用量平均每年增長(zhǎng)10%.(3) 先采用簡(jiǎn)單隨機(jī)抽樣的方法抽取若干縣(市)(作樣本),再?gòu)倪@些縣(市)中采用分

18、層抽樣的方法抽取若干家飯店,統(tǒng)計(jì)一次性木質(zhì)筷子用量的平均數(shù),從而估計(jì)總體平均數(shù),再進(jìn)一步計(jì)算所消耗的木材總量.19.(本小題滿分 12 分)某班的全體學(xué)生共有 50 人,參加數(shù)學(xué)測(cè)試(百分制)成績(jī)的頻率 分布直方圖如圖,數(shù)據(jù)的分組依次為:20,40)、40,60)、60,80)、80,100 .依此表可以估計(jì)這一次測(cè)試成績(jī)的中位數(shù)為 70 分.3 求表中 a、b 的值;4 請(qǐng)估計(jì)該班本次數(shù)學(xué)測(cè)試的平均分.解析(1)由中位數(shù)為 70 可得,0.005X20+0.01X20+aX10=0.5,解得 a= 0.02.又 20(0.005 + 0.01 + 0.02 + b) = 1,解得 b= 0.

19、015.該班本次數(shù)學(xué)測(cè)試的平均分的估計(jì)值為30X0.1 + 50X0.2 + 70X0.4+ 90X0.3 = 68分.20.(本小題滿分 12 分)現(xiàn)有 6 道題,其中 4 道甲類題,2 道乙類題,張同學(xué)從中任取2道題解答.試求:(1) 所取的 2 道題都是甲類題的概率;(2) 所取的 2 道題不是同一類題的概率.解析(1)將 4 道甲類題依次編號(hào)為 1,2,3,4; 2 道乙類題依次編號(hào)為5,6.任取 2 道題,基本事件為:1,2 , 1,3 , 1,4 , 1,5 , 1,6 , 2,3 , 2,4 , 2,5 , 2,6 , 3,4 , 3,5, 3,6 ,4,5 , 4,6 , 5,

20、6,共 15 個(gè),而且這些基本事件的出現(xiàn)是等可能的.用 A 表示“都是甲類題”這一事件,則 A 包含的基本事件有1,2 , 1,3 , 1,4 , 2,3,6 22,4 , 3,4,共 6 個(gè),所以 P(A) = 丁 5.(2)基本事件同(1).用 B 表示“不是同一類題”這一事件,則 B 包含的基本事件有1,5,81,6 , 2,5 , 2,6 , 3,5 , 3,6 , 4,5 , 4,6,共 8 個(gè),所以 P(B)=亦.21.(本小題滿分 12 分)某高中在校學(xué)生 2000 人, 高一年級(jí)與高二年級(jí)人數(shù)相同并且都 比高三年級(jí)多 1 人.為了響應(yīng)市教育局“陽(yáng)光體育”號(hào)召,該校開(kāi)展了跑步和跳

21、繩兩項(xiàng)比賽, 要求每人都參加而且只參加其中一項(xiàng),各年級(jí)參與項(xiàng)目人數(shù)情況如下表:項(xiàng)目年級(jí)高一年級(jí)高二年級(jí)高三年級(jí)跑步abc跳繩xyz2其中 a : b : c= 2 : 3 : 5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的2.為了了解學(xué)生對(duì)本次活動(dòng)的5滿意度,采用分層抽樣從中抽取一個(gè)200 人的樣本進(jìn)行調(diào)查,則高二年級(jí)中參與跑步的同學(xué)應(yīng)抽取多少人?2 2解析全校參與跳繩的人數(shù)占總?cè)藬?shù)的 5 則跳繩的人數(shù)為;X2 000 = 800,所以跑步3的人數(shù)為匚X2 000= 1 200.523又 a: = 2 3:5,所以 a=1 200 = 240, b=命X1 200= 360,丄10,一 1所以高二年級(jí)中參與跑步的同學(xué)應(yīng)抽取360X亦=36(人).22.(本小題滿分 12 分)砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名某果農(nóng)選 取一片山地種植砂糖橘,收獲時(shí),該果農(nóng)隨機(jī)選取果樹(shù)20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間40,45, (45,50 , (50,55, (55,60進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50上的果樹(shù)株數(shù)是產(chǎn)量在區(qū)間(50,60上的果樹(shù)株數(shù)的 4 倍.(1)求 a、b 的值;從樣本中產(chǎn)量在區(qū)間(50,60上的果樹(shù)里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60上的果樹(shù) 至少有一株被抽中的概率.解析(1)樣本中

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論