版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、精選優(yōu)質(zhì)文檔-傾情為你奉上導(dǎo)數(shù)題型總結(jié)1、分離變量-用分離變量時要特別注意是否需分類討論(>0,=0,<0)2、變更主元-已知誰的范圍就把誰作為主元3、根分布 4、判別式法-結(jié)合圖像分析5、二次函數(shù)區(qū)間最值求法-(1)對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系(2)端點處和頂點是最值所在一、基礎(chǔ)題型:函數(shù)的單調(diào)區(qū)間、極值、最值;不等式恒成立此類問題提倡按以下三個步驟進(jìn)行解決:第一步:令得到兩個根;第二步:畫兩圖或列表;第三步:由圖表可知;第三種:變更主元(即關(guān)于某字母的一次函數(shù))-(已知誰的范圍就把誰作為主元)。例1:設(shè)函數(shù)在區(qū)間D上的導(dǎo)數(shù)為,在區(qū)間D上的導(dǎo)數(shù)為,若在區(qū)間D上,恒成立,則
2、稱函數(shù)在區(qū)間D上為“凸函數(shù)”,已知實數(shù)m是常數(shù),(1)若在區(qū)間上為“凸函數(shù)”,求m的取值范圍;(2)若對滿足的任何一個實數(shù),函數(shù)在區(qū)間上都為“凸函數(shù)”,求的最大值.解:由函數(shù) 得 (1) 在區(qū)間上為“凸函數(shù)”,則 在區(qū)間0,3上恒成立 解法一:從二次函數(shù)的區(qū)間最值入手:等價于 解法二:分離變量法: 當(dāng)時, 恒成立, 當(dāng)時, 恒成立等價于的最大值()恒成立,而()是增函數(shù),則(2)當(dāng)時在區(qū)間上都為“凸函數(shù)” 則等價于當(dāng)時 恒成立 變更主元法 再等價于在恒成立(視為關(guān)于m的一次函數(shù)最值問題)-22 例2:設(shè)函數(shù) ()求函數(shù)f(x)的單調(diào)區(qū)間和極值; ()若對任意的不等式恒成立,求a的取值范圍.解:
3、() 3aa a3a 令得的單調(diào)遞增區(qū)間為(a,3a)令得的單調(diào)遞減區(qū)間為(,a)和(3a,+)當(dāng)x=a時,極小值= 當(dāng)x=3a時,極大值=b. ()由|a,得:對任意的恒成立則等價于這個二次函數(shù) 的對稱軸 (放縮法)即定義域在對稱軸的右邊,這個二次函數(shù)的最值問題:單調(diào)增函數(shù)的最值問題。上是增函數(shù). (9分)于是,對任意,不等式恒成立,等價于 又點評:重視二次函數(shù)區(qū)間最值求法:對稱軸(重視單調(diào)區(qū)間)與定義域的關(guān)系例3:已知函數(shù)圖象上一點處的切線斜率為,()求的值;()當(dāng)時,求的值域;()當(dāng)時,不等式恒成立,求實數(shù)t的取值范圍。解:(), 解得 ()由()知,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)
4、遞減又 的值域是()令思路1:要使恒成立,只需,即分離變量思路2:二次函數(shù)區(qū)間最值二、參數(shù)問題1、題型一:已知函數(shù)在某個區(qū)間上的單調(diào)性求參數(shù)的范圍解法1:轉(zhuǎn)化為在給定區(qū)間上恒成立, 回歸基礎(chǔ)題型解法2:利用子區(qū)間(即子集思想);首先求出函數(shù)的單調(diào)增或減區(qū)間,然后讓所給區(qū)間是求的增或減區(qū)間的子集; 做題時一定要看清楚“在(m , n)上是減函數(shù)”與“函數(shù)的單調(diào)減區(qū)間是(a , b)”,要弄清楚兩句話的區(qū)別:前者是后者的子集例4:已知,函數(shù)()如果函數(shù)是偶函數(shù),求的極大值和極小值;()如果函數(shù)是上的單調(diào)函數(shù),求的取值范圍解:. () 是偶函數(shù), . 此時, 令,解得:. 列表如下:(,2)2(2,
5、2)2(2,+)+00+遞增極大值遞減極小值遞增 可知:的極大值為, 的極小值為. ()函數(shù)是上的單調(diào)函數(shù),在給定區(qū)間R上恒成立判別式法則 解得:. 綜上,的取值范圍是. 例5、已知函數(shù) (I)求的單調(diào)區(qū)間; (II)若在0,1上單調(diào)遞增,求a的取值范圍。子集思想解:(I) 1、 當(dāng)且僅當(dāng)時取“=”號,單調(diào)遞增。 2、 a-1-1單調(diào)增區(qū)間: 單調(diào)增區(qū)間:(II)當(dāng) 則是上述增區(qū)間的子集:1、時,單調(diào)遞增 符合題意2、, 綜上,a的取值范圍是0,1。 2、題型二:根的個數(shù)問題題1 函數(shù)f(x)與g(x)(或與x軸)的交點,即方程根的個數(shù)問題解題步驟第一步:畫出兩個圖像即“穿線圖”(即解導(dǎo)數(shù)不等
6、式)和“趨勢圖”即三次函數(shù)的大致趨勢“是先增后減再增”還是“先減后增再減”;第二步:由趨勢圖結(jié)合交點個數(shù)或根的個數(shù)寫不等式(組);主要看極大值和極小值與0的關(guān)系;第三步:解不等式(組)即可。例6、已知函數(shù),且在區(qū)間上為增函數(shù)(1) 求實數(shù)的取值范圍;(2) 若函數(shù)與的圖象有三個不同的交點,求實數(shù)的取值范圍解:(1)由題意 在區(qū)間上為增函數(shù),在區(qū)間上恒成立(分離變量法)即恒成立,又,故的取值范圍為 (2)設(shè),令得或由(1)知,當(dāng)時,在R上遞增,顯然不合題意當(dāng)時,隨的變化情況如下表:極大值極小值由于,欲使與的圖象有三個不同的交點,即方程有三個不同的實根,故需,即 ,解得綜上,所求的取值范圍為根的個
7、數(shù)知道,部分根可求或已知。例7、已知函數(shù)(1)若是的極值點且的圖像過原點,求的極值;(2)若,在(1)的條件下,是否存在實數(shù),使得函數(shù)的圖像與函數(shù)的圖像恒有含的三個不同交點?若存在,求出實數(shù)的取值范圍;否則說明理由。高1考1資1源2網(wǎng)解:(1)的圖像過原點,則 ,又是的極值點,則-1 (2)設(shè)函數(shù)的圖像與函數(shù)的圖像恒存在含的三個不同交點,等價于有含的三個根,即:整理得:即:恒有含的三個不等實根有含的根,則必可分解為,故用添項配湊法因式分解, 十字相乘法分解:恒有含的三個不等實根等價于有兩個不等于-1的不等實根。題2 切線的條數(shù)問題,即以切點為未知數(shù)的方程的根的個數(shù)例7、已知函數(shù)在點處取得極小值
8、4,使其導(dǎo)數(shù)的的取值范圍為,求:(1)的解析式;(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍(1)由題意得:在上;在上;在上因此在處取得極小值,由聯(lián)立得:, (2)設(shè)切點Q,過令,求得:,方程有三個根。需:故:;因此所求實數(shù)的范圍為:題3 已知在給定區(qū)間上的極值點個數(shù)則有導(dǎo)函數(shù)=0的根的個數(shù)解法:根分布或判別式法例8、解:函數(shù)的定義域為()當(dāng)m4時,f (x) x3x210x,x27x10,令 , 解得或.令 , 解得可知函數(shù)f(x)的單調(diào)遞增區(qū)間為和(5,),單調(diào)遞減區(qū)間為()x2(m3)xm6, 1要使函數(shù)yf (x)在(1,)有兩個極值點,x2(m3)xm6=0的根在(1,)根分布問
9、題:則, 解得m3例9、已知函數(shù),(1)求的單調(diào)區(qū)間;(2)令x4f(x)(xR)有且僅有3個極值點,求a的取值范圍解:(1) 當(dāng)時,令解得,令解得,所以的遞增區(qū)間為,遞減區(qū)間為.當(dāng)時,同理可得的遞增區(qū)間為,遞減區(qū)間為.(2)有且僅有3個極值點=0有3個根,則或,方程有兩個非零實根,所以或而當(dāng)或時可證函數(shù)有且僅有3個極值點其它例題:1、(最值問題與主元變更法的例子).已知定義在上的函數(shù)在區(qū)間上的最大值是5,最小值是11.()求函數(shù)的解析式;()若時,恒成立,求實數(shù)的取值范圍.解:() 令=0,得 因為,所以可得下表:0+0-極大 因此必為最大值,因此, , 即, (),等價于, 令,則問題就是
10、在上恒成立時,求實數(shù)的取值范圍,為此只需,即, 解得,所以所求實數(shù)的取值范圍是0,1.2、(根分布與線性規(guī)劃例子)已知函數(shù)() 若函數(shù)在時有極值且在函數(shù)圖象上的點處的切線與直線平行, 求的解析式;() 當(dāng)在取得極大值且在取得極小值時, 設(shè)點所在平面區(qū)域為S, 經(jīng)過原點的直線L將S分為面積比為1:3的兩部分, 求直線L的方程.解: (). 由, 函數(shù)在時有極值 , 又 在處的切線與直線平行, 故 . 7分 () 解法一: 由 及在取得極大值且在取得極小值, 即 令, 則 故點所在平面區(qū)域S為如圖ABC, 易得, , , , , 同時DE為ABC的中位線, 所求一條直線L的方程為: 另一種情況設(shè)不
11、垂直于x軸的直線L也將S分為面積比為1:3的兩部分, 設(shè)直線L方程為,它與AC,BC分別交于F、G, 則 , 由 得點F的橫坐標(biāo)為: 由 得點G的橫坐標(biāo)為: 即 解得: 或 (舍去) 故這時直線方程為: 綜上,所求直線方程為: 或 .12分() 解法二: 由 及在取得極大值且在取得極小值, 即 令, 則 故點所在平面區(qū)域S為如圖ABC, 易得, , , , , 同時DE為ABC的中位線, 所求一條直線L的方程為: 另一種情況由于直線BO方程為: , 設(shè)直線BO與AC交于H , 由 得直線L與AC交點為: , , 所求直線方程為: 或 3、(根的個數(shù)問題)已知函數(shù)的圖象如圖所示。()求的值;()
12、若函數(shù)的圖象在點處的切線方程為,求函數(shù)f ( x )的解析式;()若方程有三個不同的根,求實數(shù)a的取值范圍。解:由題知:()由圖可知函數(shù)f ( x )的圖像過點( 0 , 3 ),且= 0得 ()依題意= 3 且f ( 2 ) = 5解得a = 1 , b = 6 所以f ( x ) = x3 6x2 + 9x + 3()依題意f ( x ) = ax3 + bx2 ( 3a + 2b )x + 3 ( a0 )= 3ax2 + 2bx 3a 2b 由= 0b = 9a 若方程f ( x ) = 8a有三個不同的根,當(dāng)且僅當(dāng) 滿足f ( 5 )8af ( 1 ) 由 得 25a + 38a7a
13、 + 3a3 所以 當(dāng)a3時,方程f ( x ) = 8a有三個不同的根。 12分4、(根的個數(shù)問題)已知函數(shù) (1)若函數(shù)在處取得極值,且,求的值及的單調(diào)區(qū)間; (2)若,討論曲線與的交點個數(shù) 解:(1)2分令得令得的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為5分(2)由題得即令6分令得或7分當(dāng)即時此時,有一個交點;9分當(dāng)即時, ,當(dāng)即時,有一個交點;當(dāng)即時,有兩個交點; 當(dāng)時,有一個交點13分綜上可知,當(dāng)或時,有一個交點; 當(dāng)時,有兩個交點14分5、(簡單切線問題)已知函數(shù)圖象上斜率為3的兩條切線間的距離為,函數(shù)() 若函數(shù)在處有極值,求的解析式;() 若函數(shù)在區(qū)間上為增函數(shù),且在區(qū)間上都成立,求實數(shù)的取值范圍(1)f(x)= 3/a2 x2,由 3/a2 x2=3得x=±a,即切點坐標(biāo)為(a,a),(-a,-a)切線方程為y-a=3(x-a),或y+a=3(x+a)(2分)整理得3x-y-2a=0或3x-y+2a=0解得a=±1,f(x)=x3g(x)=x3-3bx+3(4分)g(x)=3x2-3b,g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024遠(yuǎn)程教育資源共享平臺搭建合同
- 中學(xué)生健康知識競賽
- 2024碼頭船舶污染物接收與處理環(huán)保服務(wù)合同3篇
- 2024碎石交易協(xié)議模板一
- 2024餐館油煙凈化設(shè)備采購合同
- 2024石榴樹品種改良與繁育技術(shù)許可使用合同3篇
- 2025年城市更新項目委托物業(yè)管理合同范本2篇
- 2024融資租賃合同租賃標(biāo)的及租金
- 2025年度二人家族農(nóng)場合伙經(jīng)營協(xié)議書3篇
- 2024甲乙雙方網(wǎng)絡(luò)游戲開發(fā)與發(fā)行合同
- GB/T 39733-2024再生鋼鐵原料
- 第二章 粉體制備
- 《工業(yè)機(jī)器人現(xiàn)場編程》課件-任務(wù)3.涂膠機(jī)器人工作站
- 預(yù)應(yīng)力空心板計算
- 2024版珠寶鑒定技師勞動合同范本3篇
- 中國能源展望2060(2025年版)
- 2024年年第三方檢測行業(yè)分析報告及未來五至十年行業(yè)發(fā)展報告
- 李四光《看看我們的地球》原文閱讀
- GA/T 1740.2-2024旅游景區(qū)安全防范要求第2部分:湖泊型
- 華為公司戰(zhàn)略發(fā)展規(guī)劃匯報
- 2025年社區(qū)工作者考試試題庫及答案
評論
0/150
提交評論