




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、數(shù)列復(fù)習(xí)2.1 數(shù)列的表示一、概念1、定義:按一定順序排列的一列數(shù)叫做數(shù)列。注意:“有序性”是數(shù)列的基本特征!注意和集合區(qū)分2、表示:一般我們用符號:表示一個(gè)數(shù)列注意:“”是集合的符號,但不代表數(shù)列就是集合。3、通項(xiàng)公式:用含n的式子表示數(shù)列中的某項(xiàng)。即注意:通項(xiàng)公式是一種特殊的函數(shù)表示形式(離散型); 并不是所有的數(shù)列都能寫出通項(xiàng)公式。4、前n項(xiàng)和公式:用含n的式子表示數(shù)列前n項(xiàng)的和。即注意:前n項(xiàng)和公式同樣是一種特殊的函數(shù)表示形式; 前n項(xiàng)和與通項(xiàng)的關(guān)系: ···········&
2、#183;·················································&
3、#183;······例題1:下列敘述正確的是注意:數(shù)列與集合的區(qū)別。A、數(shù)列1、3、5、7和數(shù)列7、5、3、1是同一個(gè)數(shù)列B、同一個(gè)數(shù)字在數(shù)列中可能重復(fù)出現(xiàn)C、數(shù)列的通項(xiàng)公式是定義域?yàn)檎麛?shù)集的函數(shù)D、數(shù)列的通項(xiàng)公式是惟一的5、遞增數(shù)列和遞減數(shù)列遞增數(shù)列都滿足:或遞減數(shù)列都滿足:或·····················
4、183;··············································例題2:已知數(shù)列是遞增數(shù)列,且,則實(shí)數(shù)的
5、取值范圍是 。·················································
6、;···················2.2 等差數(shù)列一、概念1、如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)叫做 。2、定義法證明數(shù)列是等差數(shù)列若數(shù)列中存在:(d為常數(shù)),則為等差數(shù)列;··············
7、;··················································
8、;····例題1:判斷下列數(shù)列是否等差數(shù)列(1); (2);·········································
9、3;··························二、等差數(shù)列的通項(xiàng)公式1、通項(xiàng)公式:2、推導(dǎo)過程:累加法3、等差中項(xiàng):若a,A,b成等差數(shù)列,則A叫做a與b的等差中項(xiàng),且注意:通項(xiàng)公式中的“”中,知任意三個(gè)可求另一個(gè)。例題2:已知等差數(shù)列:3,7,11,15則:135,是中的項(xiàng)嗎?注意:檢驗(yàn)一個(gè)數(shù)(式)是否數(shù)列中的一項(xiàng),只需把這個(gè)
10、數(shù)(式)代入數(shù)列的通項(xiàng)公式中即可。···············································&
11、#183;····················三、等差數(shù)列的簡單性質(zhì)1、若,則2、下標(biāo)為等差數(shù)列的項(xiàng)仍為等差數(shù)列 3、數(shù)列(為常數(shù))仍為等差數(shù)列4、和均為等差數(shù)列,則也為等差數(shù)列。··················
12、··················································
13、例題1:已知等差數(shù)列中,則的值是 。例題2:等差數(shù)列中,。求數(shù)列的通項(xiàng)公式。注意:利用等差數(shù)列性質(zhì)轉(zhuǎn)換時(shí),不要混淆性質(zhì)。例題3:設(shè)數(shù)列、都是等差數(shù)列,且,則的值是 。例題4:等差數(shù)列中,則 ··································&
14、#183;·································四、判斷一個(gè)數(shù)列是否為等差數(shù)列的方法定義法:等差中項(xiàng):通項(xiàng)法:為n的一次函數(shù);求和法:·········
15、··················································
16、·········例題1:已知數(shù)列滿足,令,求證:數(shù)列是等差數(shù)列例題2:已知a,b,c成等差數(shù)列,求證:也成等差數(shù)列。································
17、3;···································2.3 等差數(shù)列前n項(xiàng)和一、前n項(xiàng)和公式1、公式:2、推導(dǎo):倒序求和(等差專用)3、注意:中,“知三求二”。要根據(jù)已知條件合理選用公式,列方程求解。4、運(yùn)用公式,要注意性質(zhì)“”
18、的運(yùn)用。·················································
19、183;··················例題1:此類題目的中心思想是方程思想。(1)已知等差數(shù)列的前5項(xiàng)和為25,第8項(xiàng)是15,求第21項(xiàng)。(2)等差數(shù)列16,12,18,的前幾項(xiàng)和為72?(3)一個(gè)等差數(shù)列第5項(xiàng)為10,前3項(xiàng)和為3,求和。例題2:已知數(shù)列的前n項(xiàng)和,則數(shù)列的通向公式為注意:活用前n項(xiàng)和通項(xiàng)的關(guān)系。例題3:在等差數(shù)列中,求。······
20、··················································
21、············二、等差數(shù)列的性質(zhì)1、等差數(shù)列中,連續(xù)m項(xiàng)的和仍組成等差數(shù)列,即:仍為等差數(shù)列。2、設(shè)數(shù)列的前n項(xiàng)和的公式為,則為等差數(shù)列的充要條件是。3、等差數(shù)列中,當(dāng)n為奇數(shù)時(shí), ,當(dāng)n為偶數(shù)時(shí), ······················
22、83;·············································例題1:等差數(shù)列的公差,且,求。例題2:已知等差數(shù)列的
23、前n項(xiàng)和為377,項(xiàng)數(shù)n為奇數(shù),且前n項(xiàng)和中奇數(shù)項(xiàng)和偶數(shù)項(xiàng)的比是6:7,求中間項(xiàng)。例題3:等差數(shù)列的前4項(xiàng)和為25,后四項(xiàng)和為63,前n項(xiàng)和為286,求n。變式1:(中難)在等差數(shù)列中,求。例題4:(中難)已知等差數(shù)列的前n項(xiàng)和分別為和,若,求·····························
24、3;······································三、裂項(xiàng)相消法求數(shù)列前n項(xiàng)和例題1:求數(shù)列;········
25、··················································
26、··········2.4 等比數(shù)列一、概念1、如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列,這個(gè)常數(shù)叫做 。2、定義法證明數(shù)列是等比數(shù)列若數(shù)列中存在:(q為常數(shù)),則為等比數(shù)列;3、注意:等比數(shù)列中公比,任意一項(xiàng)不能等于0···················
27、183;················································例題1:判斷下面
28、數(shù)列是否等比數(shù)列:(1)(2)在數(shù)列中已知;(3)常數(shù)列(4)在數(shù)列中,其中。···········································
29、83;························二、等比數(shù)列通項(xiàng)公式1、通項(xiàng)公式: 2、推導(dǎo)過程:累乘法3、等差中項(xiàng):若a,G,b成等比數(shù)列,則A叫做a與b的等比中項(xiàng),且注意:通項(xiàng)公式中的“”中,知任意三個(gè)可求另一個(gè)。···········
30、183;·················································
31、183;······例題1:已知等比數(shù)列,若,求。例題2:已知數(shù)列為等比數(shù)列。若,且,求的值例題3:(整體思想的應(yīng)用)若數(shù)列滿足關(guān)系,求數(shù)列的通項(xiàng)公式。································
32、183;···································三、等比數(shù)列的簡單性質(zhì)1、若,則2、下標(biāo)為等比數(shù)列的項(xiàng)也為等比數(shù)列3、數(shù)列(為常數(shù))仍為等比數(shù)列4、和均為等比數(shù)列,則也為等比數(shù)列。5、若為等比數(shù)列,公比為q,則其奇數(shù)項(xiàng)或
33、偶數(shù)項(xiàng)也能組成等比數(shù)列,公比為q2.···············································
34、·····················例題4:在等差數(shù)列中,若,則有等式成立,類比上述性質(zhì),相應(yīng)地,在等比數(shù)列中,若,則有等式 成立。例題5:設(shè)為公比的等比數(shù)列,若和是方程的兩根,則 。四、判斷一個(gè)數(shù)列是否為等比數(shù)列的方法定義法:等比中項(xiàng):通項(xiàng)法: 求和法:··········
35、3;·················································
36、3;·······例題5:數(shù)列的前n項(xiàng)和記為,已知。證明:(1)數(shù)列是等比數(shù)列;(2)例題6:設(shè)數(shù)列的前n項(xiàng)和記為,已知,求證:當(dāng)時(shí),是等比數(shù)列2.5 等比數(shù)列前n項(xiàng)和一、等比數(shù)列前n項(xiàng)和公式1、公式: 2、“知三求二”3、注意求和時(shí),討論“1”4、對等比數(shù)列前n項(xiàng)和:“”的理解。····················
37、3;···············································例題1:求和·
38、3;·················································
39、3;················二、等比數(shù)列前n項(xiàng)和的性質(zhì)1、連續(xù)m項(xiàng)的和仍為等比數(shù)列2、為等比數(shù)列3、若n為奇數(shù),則奇數(shù)項(xiàng)和偶數(shù)項(xiàng)和×公比;若n為偶數(shù),則偶數(shù)項(xiàng)和奇數(shù)項(xiàng)和×公比·····················&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭教育輔導(dǎo)合同:學(xué)院與家長共同簽署
- 建筑機(jī)電安裝合同
- 零售店鋪?zhàn)赓U合同細(xì)則
- 戰(zhàn)略合作合同保密規(guī)定2025
- 建筑勞務(wù)分包臨時(shí)合同
- 土地使用權(quán)出讓合同范例
- 代課教師正式合同模板
- 跨國玉米技術(shù)合作框架合同
- 畢業(yè)未就業(yè)合同樣本:就業(yè)創(chuàng)業(yè)見習(xí)
- 大型水利設(shè)施工程勞務(wù)分包合同
- AQ 6111-2023個(gè)體防護(hù)裝備安全管理規(guī)范知識培訓(xùn)
- 水滸傳讀書分享會(huì)
- GB/T 44744-2024糧食儲藏低溫儲糧技術(shù)規(guī)程
- 房地產(chǎn)市場報(bào)告 -【成都】【銳理】2024年10月丨房地產(chǎn)市場月報(bào)
- 《護(hù)理禮儀與人際溝通》第五章
- 危急值的考試題及答案
- 《算法設(shè)計(jì)與分析基礎(chǔ)》(Python語言描述) 課件 第1章 緒論
- 灌砂法壓實(shí)度自動(dòng)計(jì)算表(華巖軟件)
- 中華民族共同體的歷史、現(xiàn)實(shí)與未來
- 魯科版小學(xué)四年級下冊綜合實(shí)踐活動(dòng)教案(適合山東科學(xué)技術(shù)版教材)
- 新漢語水平考試(HSK6級)真題
評論
0/150
提交評論