版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、高中數(shù)學(xué)第七章-直線和圓的方程考試內(nèi)容:數(shù)學(xué)探索©直線的傾斜角和斜率,直線方程的點斜式和兩點式直線方程的一般式數(shù)學(xué)探索©兩條直線平行與垂直的條件兩條直線的交角點到直線的距離數(shù)學(xué)探索©用二元一次不等式表示平面區(qū)域簡單的線性規(guī)劃問題數(shù)學(xué)探索©曲線與方程的概念由已知條件列出曲線方程數(shù)學(xué)探索©圓的標(biāo)準(zhǔn)方程和一般方程圓的參數(shù)方程數(shù)學(xué)探索©考試要求:數(shù)學(xué)探索©(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程數(shù)學(xué)探索©(2)掌握兩條直線平行與垂直
2、的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系數(shù)學(xué)探索©(3)了解二元一次不等式表示平面區(qū)域數(shù)學(xué)探索©(4)了解線性規(guī)劃的意義,并會簡單的應(yīng)用數(shù)學(xué)探索©(5)了解解析幾何的基本思想,了解坐標(biāo)法數(shù)學(xué)探索©(6)掌握圓的標(biāo)準(zhǔn)方程和一般方程,了解參數(shù)方程的概念。理解圓的參數(shù)方程§07. 直線和圓的方程 知識要點一、直線方程.1. 直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時,其傾斜角為0,故直線傾斜角的范圍是.注:當(dāng)或時,直線垂直于軸,它的斜率不存在.每一
3、條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時,其傾斜角也對應(yīng)確定.2. 直線方程的幾種形式:點斜式、截距式、兩點式、斜切式.特別地,當(dāng)直線經(jīng)過兩點,即直線在軸,軸上的截距分別為時,直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對于直線的斜截式方程,當(dāng)均為確定的數(shù)值時,它表示一條確定的直線,如果變化時,對應(yīng)的直線也會變化.當(dāng)為定植,變化時,它們表示過定點(0,)的直線束.當(dāng)為定值,變化時,它們表示一組平行直線.3. 兩條直線平行:兩條直線平行的條件是:和是兩條不重合的直線. 在和的斜率都存在的
4、前提下得到的. 因此,應(yīng)特別注意,抽掉或忽視其中任一個“前提”都會導(dǎo)致結(jié)論的錯誤.(一般的結(jié)論是:對于兩條直線,它們在軸上的縱截距是,則,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則. 兩條直線垂直:兩條直線垂直的條件:設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在. ,且的斜率不存在或,且的斜率不存在. (即是垂直的充要條件)4. 直線的交角:直線到的角(方向角);直線到的角,是指直線繞交點依逆時針方向旋轉(zhuǎn)到與重合時所轉(zhuǎn)動的角,它的范圍是,當(dāng)時.兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個角中最小的正角,又稱為和所成的角,它
5、的取值范圍是,當(dāng),則有.5. 過兩直線的交點的直線系方程為參數(shù),不包括在內(nèi))6. 點到直線的距離:點到直線的距離公式:設(shè)點,直線到的距離為,則有.注:1. 兩點P1(x1,y1)、P2(x2,y2)的距離公式:.特例:點P(x,y)到原點O的距離:2. 定比分點坐標(biāo)分式。若點P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則 特例,中點坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。3. 直線的傾斜角(0°180°)、斜率:4. 過兩點. 當(dāng)(即直線和x軸垂直)時,直線的傾斜角,沒有斜率兩條平行線間的距離公式:設(shè)兩條平行直線,它們之間的距離為,則有.注;直線系方
6、程1. 與直線:Ax+By+C= 0平行的直線系方程是:Ax+By+m=0.( mR, Cm).2. 與直線:Ax+By+C= 0垂直的直線系方程是:Bx-Ay+m=0.( mR)3. 過定點(x1,y1)的直線系方程是: A(x-x1)+B(y-y1)=0 (A,B不全為0)4. 過直線l1、l2交點的直線系方程:(A1x+B1y+C1)+( A2x+B2y+C2)=0 (R) 注:該直線系不含l2.7. 關(guān)于點對稱和關(guān)于某直線對稱:關(guān)于點對稱的兩條直線一定是平行直線,且這個點到兩直線的距離相等.關(guān)于某直線對稱的兩條直線性質(zhì):若兩條直線平行,則對稱直線也平行,且兩直線到對稱直線距離相等.若兩
7、條直線不平行,則對稱直線必過兩條直線的交點,且對稱直線為兩直線夾角的角平分線.點關(guān)于某一條直線對稱,用中點表示兩對稱點,則中點在對稱直線上(方程),過兩對稱點的直線方程與對稱直線方程垂直(方程)可解得所求對稱點.注:曲線、直線關(guān)于一直線()對稱的解法:y換x,x換y. 例:曲線f(x ,y)=0關(guān)于直線y=x2對稱曲線方程是f(y+2 ,x 2)=0. 曲線C: f(x ,y)=0關(guān)于點(a ,b)的對稱曲線方程是f(a x, 2b y)=0. 二、圓的方程.1. 曲線與方程:在直角坐標(biāo)系中,如果某曲線上的 與一個二元方程的實數(shù)建立了如下關(guān)系:曲線上的點的坐標(biāo)都是這個方程的解.以這個方程的解為
8、坐標(biāo)的點都是曲線上的點.那么這個方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).曲線和方程的關(guān)系,實質(zhì)上是曲線上任一點其坐標(biāo)與方程的一種關(guān)系,曲線上任一點是方程的解;反過來,滿足方程的解所對應(yīng)的點是曲線上的點.注:如果曲線C的方程是f(x ,y)=0,那么點P0(x0 ,y)線C上的充要條件是f(x0 ,y0)=0 2. 圓的標(biāo)準(zhǔn)方程:以點為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點,半徑為的圓的方程是:.注:特殊圓的方程:與軸相切的圓方程 與軸相切的圓方程 與軸軸都相切的圓方程 3. 圓的一般方程: .當(dāng)時,方程表示一個圓,其中圓心,半徑.當(dāng)時,方程表示一個點.當(dāng)時,方程無圖形(稱
9、虛圓).注:圓的參數(shù)方程:(為參數(shù)).方程表示圓的充要條件是:且且.圓的直徑或方程:已知(用向量可征).4. 點和圓的位置關(guān)系:給定點及圓.在圓內(nèi)在圓上在圓外5. 直線和圓的位置關(guān)系: 設(shè)圓圓:; 直線:; 圓心到直線的距離.時,與相切;附:若兩圓相切,則相減為公切線方程.時,與相交;附:公共弦方程:設(shè)有兩個交點,則其公共弦方程為.時,與相離. 附:若兩圓相離,則相減為圓心的連線的中與線方程. 由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6. 圓的切線方程:圓的斜率為的切線方程是過圓上一點的切線方程為:.一般方程若點(x0 ,y0)在圓上,則(x a)(x0 a)+(y b)(y0 b)=R2. 特別地,過圓上一點的切線方程為.若點(x0 ,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7. 求切點弦方程:方法是構(gòu)造圖,則切點弦方程即轉(zhuǎn)化為公共弦方程. 如圖:ABCD四類共圓. 已知的方程 又以ABCD為圓為方程為 ,所以BC的方程即代,相切即為所求.三、曲線和方程1.曲線與方程:在直角坐標(biāo)系中,如果曲線C和方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:1) 曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安徽建筑安全員-B證考試題庫附答案
- 貴州財經(jīng)職業(yè)學(xué)院《材料與施工工藝》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽幼兒師范高等??茖W(xué)?!豆芾韺W(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年上海市建筑安全員考試題庫及答案
- 2025年河南省建筑安全員考試題庫附答案
- 貴陽信息科技學(xué)院《薪酬與福利》2023-2024學(xué)年第一學(xué)期期末試卷
- 硅湖職業(yè)技術(shù)學(xué)院《食品試驗設(shè)計》2023-2024學(xué)年第一學(xué)期期末試卷
- 貴陽學(xué)院《物理污染控制工程》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025云南省建筑安全員C證考試題庫
- 廣州新華學(xué)院《音樂劇演唱(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2023年鞍山市海城市教育局畢業(yè)生招聘筆試真題
- 北京2025年首都醫(yī)科大學(xué)附屬北京友誼醫(yī)院招聘140人歷年參考題庫(頻考版)含答案解析
- 遼寧省撫順縣2024-2025學(xué)年九年級上學(xué)期期末物理試卷(含答案)
- 2024-2025學(xué)年安徽省合肥市巢湖市三年級數(shù)學(xué)第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 浙江省寧波市九校2023-2024學(xué)年高一上期末聯(lián)考生物試題
- 《工商管理專業(yè)畢業(yè)實習(xí)》課程教學(xué)大綱
- 乳腺中心建設(shè)方案
- 國開電大本科《西方經(jīng)濟(jì)學(xué)(本)》網(wǎng)上形考(作業(yè)一至六)試題及答案
- 提高有風(fēng)險患者預(yù)防跌倒墜床護(hù)理措施落實率品管圈PDCA案例匯報
- 安環(huán)部2025年度工作計劃
- 2024年行政執(zhí)法人員執(zhí)法資格知識考試題庫(附含答案)
評論
0/150
提交評論