數(shù)值分析第四版答案_第1頁
數(shù)值分析第四版答案_第2頁
數(shù)值分析第四版答案_第3頁
已閱讀5頁,還剩69頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、第一章 緒論1設(shè)x 0, x的相對誤差為,求In x的誤差解:近似值x*的相對誤差為e*x* xx*x*而In x的誤差為e In x*In x* Inx1x*e*進(jìn)而有 (In x*)2設(shè)x的相對誤差為2%求xn的相對誤差。xf ( x)解:設(shè)f(x) xn,則函數(shù)的條件數(shù)為 Cp |f(x)n 1n 1X nx |又 f (x) nx , Cp I| nn又;r(x*) n) Cp r(x*)且 er (x*)為 2r(x*)n)0.02 n3 下列各數(shù)都是經(jīng)過四舍五入得到的近似數(shù),即誤差限不超過最后一位的半個單位,試指385.6出它們是幾位有效數(shù)字:X; 1.1021 , X;0.031

2、 ,X;x456.430, x 7 1.0.解:X;1.1021是五位有效數(shù)字;x;0.031是二位有效數(shù)字;X3385.6是四位有效數(shù)字;X456.430是五位有效數(shù)字;x57 1.0.是二位有效數(shù)字。, * *x2/ x4.4利用公式(2.3)求下列各近似值的誤差限:(1) X1 X2 X4 ,(2) X1 X2X3 ,(3) 其中x*,x2,x3,x4均為第3題所給的數(shù)。解:*14(X1)210*1,亠3(X2)210*11(X3)210*1,亠3210*11(X5)210* *(1) (X1X2X4)*(X1 )(X2)1 41 “-10-10221.051033(X4)1 1032X

3、2X3* * *X1X3(X2)(2)(X1X2X3)* * *X1X2 (X3)1.1021 0.03110 1 *10.031 385.6 -10411.1021 385.6 ? 10 30.215(3) (X2/X4)(X4) X4*(X2)2103R2C3則何種函數(shù)的條件數(shù)為R3 R3* 2X41 30.03110 56.4302r(V*)Cp(R*)3 r(R*)又(V*)11故度量半徑R時允許的相對誤差限為r(R*)-36設(shè)丫0 28,按遞推公式 Yn 丫 7831001 0.33(n=1,2,)計算到丫00。若取.78327.982 ( 5位有效數(shù)字),試問計算Yoo將有多大誤差

4、?解:Y, Yn 11.7831001 論0 丫99 “亦1001 丫987831001 ,丫97V 783100丫99丫981丫0 100茨依次代入后,有00綣100即丫。Y)砲,若取,78327.982,丫100(丫0。)(丫0)(27.982)14 3Y00的誤差限為一10 。丫1Yo 27.9827 求方程X211031 78310056x 10的兩個根,使它至少具有4位有效數(shù)字(78327.982 )。故方程的根應(yīng)為X1,228、783故 X128783 2827.98255.982x1具有5位有效數(shù)字x228、78328、78328 27.9820.01786355.982X2具有

5、5位有效數(shù)字、 1&當(dāng)N充分大時,怎樣求2 dx ?N 1 x2pdx arctan(N 1) arctanN xarcta n(N 1),arctan N。則 tan N 1,tanN.1 11 x2dxarcta n(ta n( )丄 tantanarctan1 tan tan丄 N 1 N arctan1 (N 1)N9.正方形的邊長大約為了100cm,應(yīng)怎樣測量才能使其面積誤差不超過1cm2 ?解:正方形的面積函數(shù)為 A(x) x2(Agt2| (t*)1 * 2g(t)(t*) )2A*| (x*).當(dāng) x* 100時,若(A*)1,1 2則(x*)1022故測量中邊長誤差限不超過0

6、.005cm時,才能使其面積誤差不超過1cm210.設(shè)S 1gt2,假定g是準(zhǔn)確的,而對t的測量有 0.1秒的誤差,證明當(dāng)t增加時S的 絕對誤差增加,而相對誤差卻減少。1 2解: , S 尹,t 0(S*) gt2| (t*)當(dāng)t *增加時,S*的絕對誤差增加r(S*)(S*) S*當(dāng)t*增加時,(t*)保持不變,則 S*的相對誤差減少。11序列 y 滿足遞推關(guān)系yn I0yn 1 1 (n=1,2,),若y0,2 1.41 (三位有效數(shù)字),計算到y(tǒng)10時誤差有多大?這個計算過程穩(wěn)定嗎?解::y0邁 1.411 2(y。*) 2 102又;yn 10yn1 1y1 10 y0 1S) 10

7、(y。*)又:y2 10y1 1(y2*) 10 (y1*)(y2*)102 (y*)10(Y10*)10 (y*)1010 1 10221 10821計算到y(tǒng)e時誤差為? 108,這個計算過程不穩(wěn)定。12計算f C-.2 1)6,取 .2,利用下列等式計算,哪一個得到的結(jié)果最好?1(/2 1)6(32)3,1,99 70、2 。(3 2*2)3解:設(shè) y (x 1)6, *I若 x .2 , x 1.4,貝Ux102若通過(,,21)6計算y值,則1(X 1)7*(X若通過(32.2)3計算y值,則* 21 i *y(3 2X ) I x6y x3 2x* *y x若通過計算y值,則(3 2

8、.2)3通過 3計算后得到的結(jié)果最好。(3 2、2)31(3 2X*)1 *7 y x (3 2X )7 y* *y x13. f (x) In(x . x2 1),求f (30)的值。若開平方用 6位函數(shù)表,問求對數(shù)時誤差有多大?若改用另一等價公式。ln(xx2 1) ln(x . x2 1)計算,求對數(shù)時誤差有多大?解:f(x) ln(x Jx2 1), f (30) In(30 7899)設(shè) u .899, y f (30)則u*(xXj(xX2)(X。X1)(XX2)(xX0)(XX2)(X1X0)(XX2)(xX)(XX1)(X2X)(X2X1)l(x)h(x)l2(x)則二次拉格朗

9、日插值多項式為2L2(x)yk(x)k 0X2X/V1 - 22)(X4 - 3*y uu1 *u0.01673若改用等價公式ln(x 、x 1) ln(x -X 1)則 f (30)In(30. 899)此時,* *y uu1 *u59.98337第二章插值法1當(dāng)x 1, 1,2時,f(x) 0, 3,4 ,求f (x)的二次插值多項式。解:x0 x1h x2尹 1)(x 1)f(x。) 0,f(X1)3,f(X2) 4;1(x 1)(x 2)21(x 1)(x 2)62.給出f(x) lnx的數(shù)值表X0.40.50.60.70.8lnx-0.916291-0.693147-0.510826

10、-0.356675-0.223144用線性插值及二次插值計算 In0.54的近似值。 解:由表格知,x00.4, x10.5, x20.6, x3 0.7, x4f(x。)0.916291, f (x1)0.693147f(X2)0.510826, f (x3)0.356675f(X4)0.223144若采用線性插值法計算In0.54即f (0.54),則 0.5 0.54 0.6h(x)XXIX2X210(x0.6)J(x)XX2X1X110(x0.5)Li(x)f(xjli(x) f(X2)2(x)6.93147(x 0.6) 5.10826( x 0.5)L1 (0.54)0.62021

11、860.620219l(x)(xX1)(xX2)(X。X1)(XX2)h(x)(XX0)(XX2)(X1X0)(X1X2)若采用二次插值法計算In0.54時,50( x 0.5)(x 0.6)100(x 0.4)( x 0.6)l2(x) (x x0)(x x1)50(x 0.4)(x 0.5)(X2 X0)(X2 X1)L2(x)f(x)l(x) f(X1)h(X) f(X2)2(X)50 0.916291(x 0.5)(x0.6) 69.3147( x 0.4)(x 0.6) 0.510826 50(x 0.4)(x0.5)L2(0.54)0.615319840.615320(1/60),

12、若函數(shù)表具有5位有效數(shù)字,研3.給全cosx,0; x 90的函數(shù)表,步長h 1究用線性插值求cosx近似值時的總誤差界。解:求解cosx近似值時,誤差可以分為兩個部分,一方面,x是近似值,具有 5位有效數(shù)字,在此后的計算過程中產(chǎn)生一定的誤差傳播;另一方面,利用插值法求函數(shù)cosx的近似值時,采用的線性插值法插值余項不為0,也會有一定的誤差。因此,總誤差界的計算應(yīng)綜合以上兩方面的因素。當(dāng) 0: x 901 時,令 f (x) cosxXo0,h(6060 180 10800令 xx0 ih,i 0,1,.,5400則滋290當(dāng)x Xk,xki時,線性插值多項式為Li(x) f(Xk)x xk1

13、f(xki) x xkxk xk 1xk 1 xk插值余項為R(x) cosx L1(x)12 f ( )(x xk)(x xk1)又;在建立函數(shù)表時,表中數(shù)據(jù)具有5位有效數(shù)字,且cosx 0,1 ,故計算中有誤差傳播過程。*15(f (xk)2 105R2(x)(f(f*g)(Xk)(XkxXkXk 1Xk 1Xk 1xk 1(f*(Xk1)X Xk 1Xk 1Xkx Xk 1Xk 1XkR R(x)甩(x)I*2( cos )(xxk)(x Xk1) (f(xk)1 *(x Xk)(Xki x) (f (Xk)2(222108 i1.06 10 -250.50106 104.設(shè)為互異節(jié)點,

14、求證:n(1)x:lj(x) xk (k 0,1,川,n);j 01n(2)(Xjx)k| j (x)0 (k 0,1,|,n);j 0證明(1 )令 f (x) xk若插值節(jié)點為xj, j0,1川,n,則函數(shù)f (x)的n次插值多項式為 Ln(x)x:lj(x)j 0插值余項為R,(x)f(x) Ln(x)(n1)()(n 1)!n 1(X)I I又k n,f(n1)( )0Rn(x)0nkl /kXjlj(x) Xj 0(k 0,1,川,n);n k(Xj X) lj(x)j 0n n(Cxj( x)k i)lj(x)j 0 i 0nnik iiCk( X) ( Xjlj(x)i 0j 0

15、又0 i n 由上題結(jié)論可知nj O原式iCk(okX)i iX(X X)kO得證。5 設(shè) f (x)C2 a,b 且 f (a)f(b)O,求證:maxf(x)i(ba)2maxa x bf (x).解:令xoa, Xib,以此為插值節(jié)點,則線性插值多項式為Li(x)f(Xo) XXf (Xi)X XoXoXiX Xof(b)x aX b= f (a)- a b,11又、f(a) f(b) OJ(x) O插值余項為R(x) f(x) J(x)1-f (x)(X Xo)(X Xi)f(x)i又,(X8(x8 (Xi8(b12 f (x)(x xo)(x Xi)xo)(x Xi)X。)Xo)2a

16、)2maxa x bf(x)8(b6 在 4 x截斷誤差不超過2X)a)2 maxf(X)4上給出f(x) ex的等距節(jié)點函數(shù)表,若用二次插值求ex的近似值,要使10 6,問使用函數(shù)表的步長 h應(yīng)取多少?解:若插值節(jié)點為 x i,xi和xi i,則分段二次插值多項式的插值余項為R(x)石 f ( )(x Xi 1)(x x)(x Xi 1) 3!1 (x Xi 1)(X6R2(x)x)(x x j maxf (x)設(shè)步長為h,即 xi 1xih,Xi 1XihR2(X)6 3y324h3.27若截斷誤差不超過10 6 ,R2(x)10 6e4h310 627h 0.0065.7若 yn 2n,

17、求 4yn及4yn.,解:根據(jù)向前差分算子和中心差分算子的定義進(jìn)行求解。nyn24yn(E1)4yn4(j 04(j 04(j 0(21)j1)j1)j4j4j4jE4 jyny4 n j24j Yn1)4ynyn2n1E 2)4yn4yn11(E 2)4(E 1)4yn24Eyn yn 22“ 28 如果f (x)是 m次多 項式,記f(x) f(x h) f (x),證明f (x)的k階差分f(x)(Ok m)是m k次多項式,并且m 1f (x)0 (l為正整數(shù))。解:函數(shù)f (x)的Taylor展式為f(x h) f (x)f (x)h jf(x)h2 卅1m!(m)(x)hm1(m

18、1)!(m 1)()h其中 (x,x h)又:f (x)是次數(shù)為m的多項式f(m1)()of(x) f(x h) f(x)f (x)h 1f (x)h2卻叭x)hmf (x)為m 1階多項式f (x)(f(x)f (x)為 m2階多項式依此過程遞推,得 k f (x)是m k次多項式mf (x)是常數(shù)當(dāng)I為正整數(shù)時,m1f(x)09證明(fkgk)fk gkgk 1 fk證明(fkgk)fk 1gk 1fkgkfk 1gk 1fkgk 1fkgk 1fkgkgk 1( fk1fk )fk(gk 1gk)gk 1 fkfk gkfk gkgk 1 fk得證n 1n110.證明fk gkfngnf

19、0g0gk 1 fkk 0k0證明:由上題結(jié)論可知fk gk (fkgk) gk 1 fkn 1fk gkk 0n 1gk1 fk)gk1k 0(fkgk)k 0n 1(fkgk)k 0(fkgk) fk 1gk1 fkgkn 1(fkgk)k 0n 1fk gkk 0fngnf0g0n 1gk 1k 0得證。n 111 .證明2yjynyj 0n 1n 1證明2yj(yj 1yj)j 0j 0(y1y0)(y2yny0(f1g1 fog。)(f2g2 仏1)卅(fngn fn 1gn 1) fngn fog。ydl|l ( y % 1)得證。12.若 f (x) a ajx 川 an 1xn

20、 1anXn有n個不同實根X1,X2,川,Xn,證明:nX:0,0 kn 2;j 1 f (Xj)n01,kn 1證明:-f (x)有個不同實根X1.X2.IIXna0 a1X 卅an 1Xn1且 f (x)nanXf(X) an(X Xj(X X2) |(x Xn) 令 n(x) (X Xj(X X2)|(X Xn)XjXj而 n(X) (X X2)(X X3)川(X Xn) (X XJ(X X3)|(X Xn)n(Xj)川(X Xi)(X X2)川(xXn l)(XjXi)(Xj X2) (Xj Xj i)(Xj Xj i) (Xj Xn)令 g(x)kXj1 n(Xj)則 g x1,x2

21、,|,XnkXj1 n(Xj)nkn X,又L-j 1 f (Xj)1g Xi,X2 an,|幾nknXjj i f (Xj)0,0 k n 2;1no ,k n 1得證。13.證明n階均差有下列性質(zhì):(J )若 F(x) Cf(x),則 F Xg,XiJ|,Xncf X0,XiJ|,Xn ;(2)若 F(x) f(x) g(x),則 F Xo,Xi,卅,Xnf 心,川,人 g Xo,Xi,|”,Xn 證明:)1 f Xi,X2?,Xnn f(xj)j o(Xj Xo)|(Xj Xj J(Xj XjJ 卅(XjXn)F Xi,X2,川,Xnj 0F(Xj)(Xj Xo 川 |(Xj XjJ(X

22、j Xji)|(Xj X)ncf(XjjO(Xj X。) (Xj Xji)(Xj XjJ (Xj Xn)c( nf(xj)j 0 (Xj Xo)(XjXj i)(XjXj i)| (Xj Xn)Cf X),Xi, |,Xn得證。;F(x) f(x) g(x)F(xj)j 0(XjX0)|(Xj Xj J(Xj Xj1)M(Xj XjXj 1 f(xj) g(xj) j 0 (j X0)卅(Xj Xj 1)(Xj xj 1 川 l(Xj Xn) f(xj)j 0(Xj X。川 |(Xj Xj1)(Xj Xj1)川(Xj Xn)得證。j 0 (Xj X0川 |(Xjg(xj)Xj 1)(Xj Xj

23、 1)川(XjXn)f X0,|,XngX0 J|,Xn14. f(x)X7X4 3x 1,求 F20,21J|,27 及 F 202,卅,28。解:一 f(x) X7 X4 3x 1若 X 2i,i0,1,川,8-H-則 f Xo,X1,川,Xn(n)()n!f Xo,X1, |,X7(7)()7!7!7!f X0,X1,|,X8A 08!15證明兩點三次埃爾米特插值余項是(Xk,Xk 1)R3(x) f ()(x Xk)2(x Xk1)2/4!,解: 若X xk, xk 1,且插值多項式滿足條件H3(Xk)f(Xk),H3(Xk)f (Xk)H3(Xk1) f (Xk 1), H3(Xk

24、1) f (Xk 1)插值余項為R(x) f (x) H3(x)且 R(xJ R(XkJ 022R(x)可寫成 R(x) g(x)(x Xk) (x Xk i)其中g(shù)(x)是關(guān)于x的待定函數(shù),現(xiàn)把x看成Xk,Xk1上的一個固定點,作函數(shù)2 2(t) f(t) H3(t) g(x)(t Xk) (t Xki)根據(jù)余項性質(zhì),有(Xk) 0, (Xki)0(X) f (X) H3(x) g(x)(x Xk) (X Xk i)f(x) H3(x) R(X)02 2(t) f (t) H3(t) g(x)2 (t Xk)(t Xki)2(t Xk 1 )(t Xk)(Xk)0(Xk i)0由羅爾定理可知

25、,存在(xk,x)和(x,xk 1),使(i)0,( 2)0即(x)在xk,i上有四個互異零點。根據(jù)羅爾定理,(t)在(t)的兩個零點間至少有一個零點,故 (t)在(xk,xki)至少有三個互異零點,依此類推,(t)在(xk ,xk J至少有一個零點。記為(Xk,Xk i)使(4)( ) f(4)( ) H3(4)( ) 4!g(x)0又1 H3(4)(t)0f(4)()g(x),(Xk,Xk i)4!其中依賴于xR(x) (x x$(x xki)24!分段三次埃爾米特插值時,若節(jié)點為xk(k0,1,川,n),設(shè)步長為h,即XkX。kh,k0,1,川,n在小區(qū)間兀入上R(x)()(x4!R(x

26、)Xk)2(x Xki)2)(x Xk)2(x Xki)2(X Xk )2 (Xk 1 4!1 x Xk Xk i 4!(Tx)2 max f (x)a x bv -)22max f(4)(x)a x b16 .P(0)丄4!h4-h4 max f1 * * (4) (x)24a x bv max f (x)384 a x b)求一個次數(shù)不高于 4 次的多項式P(0) 0,P(1) P(1) 0,P(2) 0P ( x ),使它滿足X 0,X11y。0,y1 1m00,mi 1(x)1yjj 00(X)(1 2(12x)( x1(x)(1 2(32x)x20(X)x(xj(x)X X1)(X

27、X0)2XI X0 X1X01)21(x) (X 1)x2解:利用埃米爾特插值可得到次數(shù)不高于4的多項式3H3(x)(3 2x)x (x 1)x x 2x2 2設(shè) P(x) H3(x) A(x X0)(x X1)其中,A為待定常數(shù)11x3 2x2 Ax2(x 1)2(P(2) 1P(x)a*從而P(x)1 24x(x 3)17-設(shè) f (x)1/(1 X2),在 5 x 5上取n 10,按等距節(jié)點求分段線性插值函數(shù)lh(x),計算各節(jié)點間中點處的| h(x)與f (x)值,并估計誤差。解:r右 X05, X10則步長h 1,XiX0 ih,i0,1,川,10f(X)七在小區(qū)間xi, x1上,分

28、段線性插值函數(shù)為lh(x)f(Xi)Xi Xi 1X XiX 1 Xf (Xi 1 )(X 1X)1 x2(xx)11各節(jié)點間中點處的lh(X)與f (x)的值為當(dāng)X4.5 時,f (x)0.0471, I h(x)0.0486當(dāng)X3.5 時,f (x)0.0755, Ih(x)0.0794當(dāng)X2.5 時,f (x)0.1379, h(x)0.1500當(dāng)X1.5 時,f (x)0.3077, Ih(x)0.3500當(dāng)X0.5 時,f (x)0.8000, Ih(x)0.75002 Xi 14早圭 誤差maxxi x x. 1f(x)Ih(x)h2max f ()85x5又、f(x)f (x)f

29、 (x)f (x)11 x22xdF6x2 23(1 x ) 24x 24x3(1 x2)4令 f (x)0得f (x)的駐點為Xi,21 和 x301f (X1,2)2, f (X3)max f(x) Ih (x)5x518求f(x) x2在a, b上分段線性插值函數(shù)lh(x),并估計誤差解:在區(qū)間ab上,X。 a,Xn b,h. x. 1 x.,i 0,1,川,n 1,h max h.0 i n 1 .2t f(x) X函數(shù)f (x)在小區(qū)間X ,x.上分段線性插值函數(shù)為lh(x)f(Xi)X. X. 1XX.X 1 Xf (X. 1)122X. (X. 1 X)X. 1 (XX.)h.誤

30、差為maxX x Xi 1f (X)lh(x)i 12.f(x) xf (X)2x, f (x)max f (x)a x blh(x)1max f8 a b24()|hi219求f(x) x4在a,b上分段埃爾米特插值,并估計誤差。解:在a,b區(qū)間上,Xo a, Xn b,hiXi,i 0,1|,n 1,令 h max hi0 i n 1f (x) x4, f (x) 4x3函數(shù)f (x)在區(qū)間xi, xi 1上的分段埃爾米特插值函數(shù)為lh(x) ()2(1 24 f(x)x x 1x 1 人(42(12)f(XiJN 1 Nx xi 1(2)2(x xi)f (x)X x 1(X Xi )2

31、 (x Xi1)f(X1)x 1 X4討x x 1)2(h 2X 2xi)4X 1 /r(xh3xj2(h4x3帚(XXi 1)2(xx 3(XG2(X2x 2xi 1)Xi)Xi 1)誤差為f(4) ( ) (x X)2(x X 1)2f(x) lh(x) 1 4!一max f(4)()124 a x b又:f(x) X4f (x)4! 24max f (x) lh (x a x b44h h max 0 i n 1 1616X0.250.300.390.450.53Y0.50000.54770.62450.67080.728020.給定數(shù)據(jù)表如下:試求三次樣條插值,并滿足條件:(1) S

32、(0.25)(2) S (0.25)1.0000, S (0.53)0.6868;S (0.53)0.hxX00.05h1xX10.09h2X3x0.06h3x4x30.08i *hj1jhj 1hj 解:Jhj 1hj hj5114,914,225, 3f(xj47, 0f(X)x, X1X1X0X1, X0.8533X2,X30.771723110.9540Jx3, x40.7150S(Xo) 1.0000,S(X4) 0.6868d。6(f x1,x2f0)5.5200hofX1,X2fX0,X1hh1fX2,X3fX1,X2h1hzfX3,X4fX2,X3h2h364.315763.2

33、64062.4300d1d2d3d42.11506(f4 f X3,X4 )h3由此得矩陣形式的方程組為M15M14141475.52004.31573.26402.43002.1150求解此方程組得M02.0278,M11.4643M21.0313,M30.8070,M40.6539(xj 1 x)3S(x) Mj3j 6hj(y Mjhj2)Xj1 (yj 丁)三次樣條表達(dá)式為(X Xj)36hjMj1hj2 x Xj(比1j-)j(j 0,1, ,n 1)6 hj將 MoMjMzMs, M4 代入得6.7593(0.30x)34.8810(x0.25)3x 0.25,0.302.7117

34、(0.39x)31.9098(x0.30)3x 0.30,0.392.8647(0.45x)32.2422(x0.39)3x 0.39,0.451.6817(0.53x)31.3623(x0.45)3x 0.45,0.53S(x) S(xo)0,S(x4)0do 2f0,d14.3157, d23.2640d32.4300,d4 2f4 0040由此得矩陣開工的方程組為10.0169(0.30 x) 10.9662(x 0.25)6.1075(0.39 x) 6.9544(x 0.30)10.4186(0.45 x) 10.9662(x 0.39)8.3958(0.53 x) 9.1087(x

35、 0.45)M。M4014M1M2M34.31573.26402.4300求解此方程組,得M00,M11.8809M20.8616,M31.0304,M4 0又;三次樣條表達(dá)式為S(x)(x 1 x)36hj(x %)36hjM jhj2 Xj 1 x6)hj(yj 1Mj 1hj2 x xj6) hj將 Mo,M1,M2,M3,M4 代入得10(0.3 x) 10.9697(x 0.25)6.2697(x 0.25)3x 0.25,0.303.4831(0.39x 0.30,0.39 S(x)x)31.5956(x 0.3)3 6.1138(0.39 x) 6.9518(x 0.30)21.

36、若2.3933(0.45x 0.39,0.452.1467(0.53x 0.45,0.53f(x)x)3x)32.8622(x 0.39)3 10.4186(0.45 x) 11.1903(x 0.39)8.3987(0.53 x)9.1(x0.45)C2 a,b ,S(x)是三次樣條函數(shù),證明:b(1)a f (x)ba f (x)2dx2b2dx S (x) dxa2 bS (x) dx 2 S (x) f (x) S (x)a(2)若 f(xjS(xJ(i0,1,川,n),式中Xi為插值節(jié)點,且axqx-i川Xnb,則baS(x) f (x) S (x)S (b) f (b) S (b)

37、dxS(a) f (a) S(a)證明:b2(1)a f (x)S (x) dxb2b2bf (x)adxS(x)adx 2f (x)S (x)dxab2b2ba f (x)dxa S(X)dx 2aSf (x) S (x)從而有b2b2a f (X)(dxaS (x) dxb2bf (x)aS(x)dx 2S(x)af (x)S (x) dx第三章函數(shù)逼近與曲線擬合1 - f(x)sinx,給出0,1上的伯恩斯坦多項式B(f,x)及B3(f ,x)。解:,f(x) sin 2 x 0,1伯恩斯坦多項式為Bn(f,X)kf ()Pk(x)k 0 n其中Pk(x)kn kx (1 x)當(dāng)n 1時

38、,1P0(x) 0(1 x)P(x) xB(f,x)10f (O)R(x)f(1)P(x)xsin 2當(dāng)n3時,R(x)10(13x)P(x)1x(120x) 3x(1F2(x)32 / ,21x (1x) 3x (1B(x)33 x3 xxx)3x)2(1 叫 0)B3(f,x)kf()Pk(x)n0 3x(132-x(1 x)225 3乜3x21.5xx)2lsi n3x2(16!3 3x (1 x) 23、3 6 23x x 2 20.402x2 0.098x3x)|sin3f(x) x 時,求證 Bn( f ,x) x證明:若 f(x)x,則Bn(f,x)n kf T)Pk(x)k o

39、 n3x sin2nk n k 一 、n k x (1 x) k 0 n kkn(n 1)|(k 1)!1k、n kx (1 x)3證明函數(shù)xx(1n 1x)1,x,lllxn線性無關(guān)n k 1) k n k x (1 x) k!(n 1)卅(n 1) (k 1) 1xk(1 x)nkxk1(1 X)(n1)(k1)證明:若aa1X2a2xlbnanX0, x R分別取xk(k0,1,2,|, n),對上式兩端在0,1上作帶權(quán) (x)1的積,得IIIa1h1n此方程組的系數(shù)矩陣為希爾伯特矩陣,對稱正定非奇異, 只有零解a=0。函數(shù)1,xJ|,xn線性無關(guān)。III12n 1an4。計算下列函數(shù)f

40、 (x)關(guān)于C0,1的f , f1與f 2 :(1)f(x) (x 1)3,x 0,11 f(x) x 2,(3)f(x) xm(1 x)n,m與 n 為正整數(shù), f(x) (x 1)10ex解:(1)若 f (x) (x 1)3,x 0,1,則f (x)3(x 1)20f(x) (x 1)3在(0,1)單調(diào)遞增 f| maxlf(x)max f (0), f(1)max 0,11ic 二f 2(0(4 x)6dx)2中1 x)To*丄71若 f (x) x -,x 0,1,則max f (x)0 x 110f (x) dx112 1(x )dx2214i1f 2(f2(x)dx)21 1 -

41、(x 嚴(yán)2J6(3) 若 f(x) xm(1 x)n, m與 n 為正整數(shù)當(dāng) x 0,1 時,f (x)0f (x) mxm1(1 x)n xmn(1 x)n1( 1)xm1(1 x)n1m(1當(dāng) x (0,-)時,f (x)0n mf(X)在(o, m)單調(diào)遞減 n m當(dāng) x (,1)時,f (x)0n mf (x)在(m ,1)單調(diào)遞減。n mx ( m ,1)f (x) 0n mPImaxlf(x)max f(0),f()f (x) dxn m11 01 mn ,ox (1 x) dx22 m2 n2sin2m t cos2 nt costas in tdtf2 0門10 2m , 2n

42、 (sin t) (1 sin t) d sin tf (x)在0,1單調(diào)遞減。maxf(x)f(0), f(i)max2e11(x0(x10 f(x) dx1)10e xdx10i)10 xI e;10(x 1)9e xdx5 201) e12xdx2e1 f 2(X7(3自5。證明f g f g證明:(f g)gf ggf gf g6。對 f (x), g(x) C1a,b,定義(1)(f,g)bf (x)g (x)dxa(f,g)ba f (x)g (x)dx f(a)g(a)問它們是否構(gòu)成積。解:(1)令 f(x)C( C為常數(shù),且C 0)則 f (x)(0而(f, f)bf (x)f

43、 (x)dxa這與當(dāng)且僅當(dāng)f 0時,(f,f)0矛盾不能構(gòu)成C1a,b上的積。b若(f ,g)f(x)g(x)dx f (a)g(a),則b(g, f) a g (x) f (x)dx g(a)f (a) (f ,g),bf (X) g (x)dx af (a)g(a)a(f ,g)bf (x)g (x)dx a(f ,g)f (a)g(a)1h Ca,b,則b(f g,h) af(x)bf (x)h (x)dx f (a)h(a) a(f,h)g(x) h (x)dx f(a)g(a)h(a)bf (x)h (x)dx g(a)h(a)a(h,g)(f, f)b 2 2af(x)dx f (a)0若(f, f)0,則b 2 2f (x)2dx 0 ,且 f2(a)0f (X)0, f(a) 0f(x) 0即當(dāng)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論