![角平分線的性質定理_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/160427c0-c755-463f-acac-1f57c8c1835d/160427c0-c755-463f-acac-1f57c8c1835d1.gif)
![角平分線的性質定理_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/160427c0-c755-463f-acac-1f57c8c1835d/160427c0-c755-463f-acac-1f57c8c1835d2.gif)
![角平分線的性質定理_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/160427c0-c755-463f-acac-1f57c8c1835d/160427c0-c755-463f-acac-1f57c8c1835d3.gif)
![角平分線的性質定理_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/160427c0-c755-463f-acac-1f57c8c1835d/160427c0-c755-463f-acac-1f57c8c1835d4.gif)
![角平分線的性質定理_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/14/160427c0-c755-463f-acac-1f57c8c1835d/160427c0-c755-463f-acac-1f57c8c1835d5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、 滬科版八年級上冊滬科版八年級上冊數學數學 第第1515章章 軸對稱圖形與等腰三角形軸對稱圖形與等腰三角形 15.4 15.4 角的平分線角的平分線 ( ( 第第2 2課時課時 角平分線定理及逆定理角平分線定理及逆定理 ) ) 安徽省滁州市第九中學安徽省滁州市第九中學 葉金山葉金山(qq:1585683455qq:1585683455) 復習提問復習提問1 1、什么叫角平分線什么叫角平分線?oBCA12復習提問復習提問 2 2、點到直線距離、點到直線距離: :從直線外一點從直線外一點到這條直線的到這條直線的垂線段垂線段的的長度長度,叫做叫做點到直線的距離。點到直線的距離。OPAB 在半透明的紙
2、上畫在半透明的紙上畫BAC,對折,使角的,對折,使角的兩條邊完全重合,然后用直尺畫出折痕兩條邊完全重合,然后用直尺畫出折痕OD. 從上面試驗可以看出,角是軸對稱圖形,對從上面試驗可以看出,角是軸對稱圖形,對稱軸是它的角平分線所在的直線稱軸是它的角平分線所在的直線.BCAD 不利用作圖工具,請你將一張用紙片做的角分成兩個不利用作圖工具,請你將一張用紙片做的角分成兩個相等的角。你有什么辦法?相等的角。你有什么辦法? 如果前面活動中的如果前面活動中的紙片換成木板紙片換成木板、鋼板鋼板等沒法折的角,又該怎么辦呢?等沒法折的角,又該怎么辦呢?用尺規(guī)作圖的方法作出角的平分線用尺規(guī)作圖的方法作出角的平分線已
3、知:如圖,已知:如圖,AOB。求作:求作:AOB的平分線。的平分線。OABCMN畫法:畫法:以為圓心,適當以為圓心,適當長為半徑作弧,交于,長為半徑作弧,交于,交于交于分別以,為分別以,為圓心大于圓心大于 1/2 的長的長為半徑作弧兩弧在為半徑作弧兩弧在的內部交于的內部交于作射線作射線射線即為所求射線即為所求BA.CE D畫法:畫法:以以C為圓心,適當長為為圓心,適當長為半徑作弧,交半徑作弧,交B于于D,E分別以分別以D,E為圓心大于為圓心大于 1/2 DE的長為半徑作弧兩弧交于的長為半徑作弧兩弧交于F作直線作直線F直線直線F即為所求即為所求FAD過直線外一點作這條直線的垂線過直線外一點作這條
4、直線的垂線BE.kc畫法:畫法:任意取一點任意取一點K,使,使K和和 C在在B兩兩 旁旁3分別以分別以D,E為圓為圓心大于心大于 1/2 DE的長為半徑的長為半徑作弧兩弧交于作弧兩弧交于F4作直線作直線F。即為所求。即為所求2以以C為圓心,為圓心,CK長長為半徑作弧,交為半徑作弧,交B于于D,EF角平分線的性質角平分線的性質 已知:如下圖,已知:如下圖,OC是是AOB的平分線,的平分線,P是是OC上任意一點,上任意一點,PDOA,PEOB,垂足,垂足分別為分別為D,E。求證:求證:PD=PE。12ABDEPOC定理:角的平分線上的點到角的兩邊的距離相等定理:角的平分線上的點到角的兩邊的距離相等
5、PD=PE(全等三角形的對應邊相等全等三角形的對應邊相等)。證明:證明:OC是是AOB的平分線的平分線(已知已知),1=2(角平分線的定義角平分線的定義)。 PDOA,PEOB(已知已知),PDO=PEO=90(垂直的定義垂直的定義)。在在PDO和和PEO中,中,PDO=PEO (已證已證),12(已證已證),OPOP(公共邊公共邊),PDO PEO (AAS)。12ABDEPOC已知:如圖已知:如圖, ,PDPDOAOA,PEPEOBOB,點點D D、E E為垂足,為垂足,PDPDPEPE求證:點求證:點P P在在AOBAOB的平分線上的平分線上OCB1A2PDE證明:證明: PDOA,PE
6、OB,點,點D、E為垂足,為垂足,在在Rt PDO 與與Rt PEO中中PDO= PEO=Rt PD=PE(已知)(已知)OP=OP(公共邊)(公共邊)RtPDO PDO1=2 即點即點P在在AOB的平分線上的平分線上 反過來,到一個角的兩邊的距離相等的點是否一定在反過來,到一個角的兩邊的距離相等的點是否一定在這個角的平分線上呢?這個角的平分線上呢? 到到一個角的兩邊的距離相等的點一個角的兩邊的距離相等的點, 在在這個角平分線上這個角平分線上例例1: 1: 已知:如圖,已知:如圖,ABCABC的角平分線的角平分線BMBM、CNCN相交相交于點于點P.P.求證:點求證:點P P在在BACBAC的
7、角平分線上的角平分線上ABCMNPDEF證明:過點證明:過點P作作PDAB于于D,PEBC于于E,PFAC于于F,BM是是ABC的角平分線,的角平分線,點點P在在BM上,上,PD=PE(角平分線上的(角平分線上的點到這個角的兩邊距離相等)點到這個角的兩邊距離相等)同理,同理,PE=PFPD=PF AP平分平分BAC 已知:如圖,已知:如圖,ABCABC的外角的外角CBDCBD和和BCEBCE的平的平分線相交于點分線相交于點F F。 求證:點求證:點F F在在DAEDAE的平分線上。的平分線上。CD A B F E OQP變式變式 CD A B P E 例例2. 已知:如圖,已知:如圖,ABC的
8、外角的外角CBD和和BCE的平分線相交于點的平分線相交于點P。 求證求證:(:(1)點)點P到三邊到三邊AB,BC,CA所在直線所在直線的距離相等;的距離相等; (2)點)點P在在DAE的平分線上。的平分線上。又又 點點P在在CBD的角平分線的角平分線 PM=PK()同理同理 PN=PK PM=PK=PN(2) PM=PN(已證)(已證) AEPN ADPM(已知已知)MNKCD A B PE 證明證明:(1)例例3. 要在區(qū)建一個集貿市場,使它到公路和鐵要在區(qū)建一個集貿市場,使它到公路和鐵路距離相等,且離公路和鐵路的交叉處路距離相等,且離公路和鐵路的交叉處500米,該米,該集貿市場應建在何處
9、?(比例尺集貿市場應建在何處?(比例尺 1:20 000)公路鐵路2.5cm解:設要截取的長度為解:設要截取的長度為m,則:則: 200001500X解得:解得:0.025 0.025 m 2.5cm則點即為所求的點則點即為所求的點例例4.如圖,已知如圖,已知ABC的外角的外角DAB和和 ABE的平分線相交于點的平分線相交于點F, 求證:點求證:點F在在DCE的平分線上的平分線上ABCFED證明:過點證明:過點F作作FGAD于于G,FHBE于于H,FMAB于于M,點點F在在DAB的平分線上,的平分線上, FGAD,FMAB,FG=FM又又點點F在在ABE的的平分線上,平分線上,FHBE, FM
10、AB,FM=FH,FG=FH,點點F在在DAE的平分線上的平分線上FABCEDGHM 如圖,如圖,AD平分平分BAC(已知)(已知) = ,( ) 在角的平分線上的點到這在角的平分線上的點到這個角的兩邊的距離相等。個角的兩邊的距離相等。ADCBBD CD() 如圖,如圖, DCAC,DBAB (已知)(已知) = ,( ) 在角的平分線上的點到這在角的平分線上的點到這個角的兩邊的距離相等。個角的兩邊的距離相等。ADCBBD CD() AD平分平分BAC, DCAC,DBAB (已知)(已知) = ,( ) DBDC在角的平分線上的點到這個在角的平分線上的點到這個角的兩邊的距離相等。角的兩邊的距離相等。ADCB不必再證全等不必再證全等1.1.如圖,在如圖,在ABCABC中,中,D D是是BCBC的中點的中點,DEAB,DEAB,DFACDFAC,垂足分別是,垂足分別是E E,F F,且,且BEBECFCF。求證:求證:ADAD是是ABCABC的角平分線。的角平分線。ABCEFD 2.在在ABC中,中, C=90 ,AD為為BAC的的平分線,平分線,DEAB,BC7,DE3.求求BD的長。的長。EDCBA3.如圖,在如圖,在ABC中,中,C=90 AD是是BAC的平分線,的平分線,DEAB于于E,F在在AC上,上,BD=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物技術藥物研發(fā)合同
- 私人訂制戶外探險活動服務協(xié)議
- 智能家居系統(tǒng)與節(jié)能照明合作協(xié)議
- 數據挖掘技術在企業(yè)決策支持系統(tǒng)中的應用合作協(xié)議
- 精密電子元器件采購合同
- 離婚標準協(xié)議書車輛分配
- 裝修公司合同保密協(xié)議
- 信用社借款展期合同協(xié)議書
- 教育培訓合作項目實施協(xié)議
- 建筑施工臨時承包合同
- DB3202-T 1026-2022 無錫市安全生產技術服務單位等級評定規(guī)范
- 產品設計材料及工藝PPT完整版全套教學課件
- 2006年度銀行業(yè)金融機構信息科技風險評價審計要點
- 反恐C-TPAT程序文件整套(通用)
- 2022年全國高考詩歌鑒賞試題-教學課件
- 教師資格證幼兒教育真題及答案近五年合集
- 化學檢驗工高級工理論知識試題題及答案
- 廣東省五年一貫制語文試卷
- 收養(yǎng)協(xié)議書真實范本模板
- 國家電網公司電力安全工作規(guī)程 配電部分 試行
- 杭州市住宅房屋裝修備案表
評論
0/150
提交評論