![初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新_第1頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/24/16e1e7ec-db5f-43be-8004-2a3c050b6c2f/16e1e7ec-db5f-43be-8004-2a3c050b6c2f1.gif)
![初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新_第2頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/24/16e1e7ec-db5f-43be-8004-2a3c050b6c2f/16e1e7ec-db5f-43be-8004-2a3c050b6c2f2.gif)
![初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新_第3頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/24/16e1e7ec-db5f-43be-8004-2a3c050b6c2f/16e1e7ec-db5f-43be-8004-2a3c050b6c2f3.gif)
![初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新_第4頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/24/16e1e7ec-db5f-43be-8004-2a3c050b6c2f/16e1e7ec-db5f-43be-8004-2a3c050b6c2f4.gif)
![初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新_第5頁](http://file3.renrendoc.com/fileroot_temp3/2022-3/24/16e1e7ec-db5f-43be-8004-2a3c050b6c2f/16e1e7ec-db5f-43be-8004-2a3c050b6c2f5.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、初一上冊數(shù)學總復習知識點考點總結歸納知識點考點總結歸納歸納最新 初一數(shù)學上冊知識點 整式的加減 1.單項式:表示數(shù)字或字母乘積的式子,單獨的一個數(shù)字或字母也叫單項式。 2.單項式的系數(shù)與次數(shù):單項式中的數(shù)字因數(shù),稱單項式的系數(shù); 單項式中所有字母指數(shù)的和,叫單項式的次數(shù). 3.多項式:幾個單項式的和叫多項式. 4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù); 5. 6.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項. 7.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變. 8.去(添)括號法則: 去(
2、添)括號時,若括號前邊是“+”號,括號里的各項都不變號;若括號前邊是“-”號,括號里的各項都要變號. 9.整式的加減:一找:(劃線);二“+”(務必用+號開始合并)三合:(合并) 10.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列). 一元一次方程 1.等式:用“=”號連接而成的式子叫等式. 2.等式的性質: 等式性質1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結果仍是等式; 等式性質2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結果仍是等式. 3.方程:含未知數(shù)的等式,叫方程. 4.方程的解:使等
3、式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”! 5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質1. 6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程. 7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0). 8.一元一次方程解法的一般步驟: 化簡方程-分數(shù)基本性質 去分母-同乘(不漏乘)最簡公分母 去括號-注意符號變化 移項-變號(留下靠前) 合并同類項-合并后符號 系數(shù)化為1-除前面 10.列一元一次方程解應用題: (1)讀題分析法:多用于“和,差,倍,分問
4、題” 仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程. (2)畫圖分析法:多用于“行程問題” 利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎. 11.列方程解應用題的常用公式: (1)行程問題:距離=速度?時間; (2)工程問題:工作量=
5、工效?工時; 工程問題常用等量關系:先做的+后做的=完成量 (3)順水逆水問題: 順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;水流速度=(順水速度-逆水速度)2 順水逆水問題常用等量關系:順水路程=逆水路程 (4)商品利潤問題:售價=定價,; 利潤問題常用等量關系:售價-進價=利潤 初一數(shù)學上冊知識點整理 一、代數(shù)初步知識。 1.代數(shù)式:用運算符號“+-”連接數(shù)及表示數(shù)的字母的式子稱為代數(shù)式(字母所取得數(shù)應保證它所在的式子有意義,其次字母所取得數(shù)還應使實際生活或生產有意義;單獨一個數(shù)或一個字母也是代數(shù)式) 2.列代數(shù)式的幾個注意事項: (1)數(shù)與字母相乘,或字母與字母相乘通常使
6、用“?”乘,或省略不寫; (2)數(shù)與數(shù)相乘,仍應使用“”乘,不用“?”乘,也不能省略乘號; (3)數(shù)與字母相乘時,一般在結果中把數(shù)寫在字母前面,如a5應寫成5a; (4)帶分數(shù)與字母相乘時,要把帶分數(shù)改成假分數(shù)形式,如a應寫成a; (5)在代數(shù)式中出現(xiàn)除法運算時,一般用分數(shù)線將被除式和除式聯(lián)系,如3a寫成的形式; (6)a與b的差寫作a-b,要注意字母順序;若只說兩數(shù)的差,當分別設兩數(shù)為a、b時,則應分類,寫做a-b和b-a. 二、幾個重要的代數(shù)式(m、n表示整數(shù))。 (1)a與b的平方差是:a2-b2;a與b差的平方是:(a-b)2; (2)若a、b、c是正整數(shù),則兩位整數(shù)是:10a+b,則
7、三位整數(shù)是:100a+10b+c; (3)若m、n是整數(shù),則被5除商m余n的數(shù)是:5m+n;偶數(shù)是:2n,奇數(shù)是:2n+1;三個連續(xù)整數(shù)是:n-1、n、n+1; (4)若b>0,則正數(shù)是:a2+b,負數(shù)是:-a2-b,非負數(shù)是:a2,非正數(shù)是:-a2. 三、有理數(shù)。 1.有理數(shù): (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù); (2)有理數(shù)的分類: (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個
8、區(qū)域,這四個區(qū)域的數(shù)也有自己的特性; 2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線. 3.相反數(shù): (1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是0; (2)注意:a-b+c的相反數(shù)是-a+b-c;a-b的相反數(shù)是b-a;a+b的相反數(shù)是-a-b; 4.絕對值: (1)正數(shù)的絕對值是其本身,0的絕對值是0,負數(shù)的絕對值是它的相反數(shù);注意:絕對值的意義是數(shù)軸上表示某數(shù)的點離開原點的距離; (2)絕對值可表示為:初一上冊知識點絕對值的問題經常分類討論; (3)|a|是重要的非負數(shù),即|a|0;注意:|a|?|b|=|a?b|, 5.有理數(shù)比大?。?1)正數(shù)的絕
9、對值越大,這個數(shù)越大;(2)正數(shù)永遠比0大,負數(shù)永遠比0小;(3)正數(shù)大于一切負數(shù);(4)兩個負數(shù)比大小,絕對值大的反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)0. 四、有理數(shù)法則及運算規(guī)律。 (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加; (2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值; (3)一個數(shù)與0相加,仍得這個數(shù). 2.有理數(shù)加法的運算律: (1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c). 3.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b)
10、. 4.有理數(shù)乘法法則: (1)兩數(shù)相乘,同號為正,異號為負,并把絕對值相乘; (2)任何數(shù)同零相乘都得零; (3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數(shù)決定. 5.有理數(shù)乘法的運算律: (1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac. 6.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),. 7.有理數(shù)乘方的法則: (1)正數(shù)的任何次冪都是正數(shù); 五、乘方的定義。 (1)求相同因式積的運算,叫做乘方; (2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘
11、方的結果叫做冪; (4)據(jù)規(guī)律底數(shù)的小數(shù)點移動一位,平方數(shù)的小數(shù)點移動二位. 3.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確到那一位. 4.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都叫這個近似數(shù)的有效數(shù)字. 5.混合運算法則:先乘方,后乘除,最后加減;注意:怎樣算簡單,怎樣算準確,是數(shù)學計算的最重要的原則. 6.特殊值法:是用符合題目要求的數(shù)代入,并驗證題設成立而進行猜想的一種方法,但不能用于證明. 六、整式的加減。 1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算?;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式. 2.單項式的系數(shù)與
12、次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù). 3.多項式:幾個單項式的和叫多項式. 4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))是常見的兩個二次三項式. 5.整式:單項式和多項式統(tǒng)稱為整式. 七、整式分類為。 1.同類項:所含字母相同,并且相同字母的指數(shù)也相同的單項式是同類項. 2.合并同類項法則:系數(shù)相加,字母與字母的指數(shù)不變. 3.去(添)括號法則:去(添)括號時,若括號前邊是“+”號,
13、括號里的各項都不變號;若括號前邊是“-”號,括號里的'各項都要變號. 4.整式的加減:整式的加減,實際上是在去括號的基礎上,把多項式的同類項合并. 5.多項式的升冪和降冪排列:把一個多項式的各項按某個字母的指數(shù)從小到大(或從大到小)排列起來,叫做按這個字母的升冪排列(或降冪排列).注意:多項式計算的最后結果一般應該進行升冪(或降冪)排列. 八、一元一次方程 1.等式與等量:用“=”號連接而成的式子叫等式.注意:“等量就能代入”! 2.等式的性質: 等式性質1:等式兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結果仍是等式; 等式性質2:等式兩邊都乘以(或除以)同一個不為零的數(shù),所得結果
14、仍是等式. 3.方程:含未知數(shù)的等式,叫方程. 4.方程的解:使等式左右兩邊相等的未知數(shù)的值叫方程的解;注意:“方程的解就能代入”! 5.移項:改變符號后,把方程的項從一邊移到另一邊叫移項.移項的依據(jù)是等式性質1. 6.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項的系數(shù)不是零的整式方程是一元一次方程. 7.一元一次方程的標準形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a0). 8.一元一次方程的最簡形式:ax=b(x是未知數(shù),a、b是已知數(shù),且a0). 9.一元一次方程解法的一般步驟:整理方程去分母去括號移項合并同類項系數(shù)化為1(檢驗方程的解). 九、列一元一次方
15、程解應用題。 (1)讀題分析法:多用于“和,差,倍,分問題” 仔細讀題,找出表示相等關系的關鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套-”,利用這些關鍵字列出文字等式,并且據(jù)題意設出未知數(shù),最后利用題目中的量與量的關系填入代數(shù)式,得到方程. (2)畫圖分析法:多用于“行程問題” 利用圖形分析數(shù)學問題是數(shù)形結合思想在數(shù)學中的體現(xiàn),仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,通過圖形找相等關系是解決問題的關鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關系(可把未知數(shù)看做已知量),填入有關的代數(shù)式是獲得方程的基礎. 初一數(shù)學上冊知識點 1.1 正數(shù)與負數(shù)
16、 在以前學過的0以外的數(shù)前面加上負號“”的數(shù)叫負數(shù)(negative number)。 與負數(shù)具有相反意義,即以前學過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。 1.2 有理數(shù) 正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù)(integer),正分數(shù)和負分數(shù)統(tǒng)稱分數(shù)(fraction)。 整數(shù)和分數(shù)統(tǒng)稱有理數(shù)(rational number)。 通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。 數(shù)軸三要素:原點、正方向、單位長度。 在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。 只有符號不同的兩個數(shù)叫做互為相反數(shù)(oppos
17、ite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0) 數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。 一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負數(shù),絕對值大的反而小。 1.3 有理數(shù)的加減法 有理數(shù)加法法則: 1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。 2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾?shù)的兩個數(shù)相加得0。 3.一個數(shù)同0相加,仍得這個數(shù)。 有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。 1.4 有理數(shù)的乘除法 有理數(shù)乘法法則
18、:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。任何數(shù)同0相乘,都得0。 乘積是1的兩個數(shù)互為倒數(shù)。 有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。 兩數(shù)相除,同號得正,異號得負,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。 m 求n個相同因數(shù)的積的運算,叫乘方,乘方的結果叫冪(power)。在a的n次方中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。 負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。 把一個大于10的數(shù)表示成a10的n次方的形式,使用的就是科學計數(shù)法。 從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)。 第二章 一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 現(xiàn)代農技在醫(yī)療保健領域的創(chuàng)新應用以煙草種植為例
- 匯報在項目管理中的重要作用
- 現(xiàn)代市場營銷中的網絡直播工具選擇與應用
- 現(xiàn)代商業(yè)項目中的綠色建筑策略
- Unit 3 Transportation Period 1(說課稿)-2024-2025學年人教新起點版英語四年級上冊
- 2024-2025學年高中地理上學期第十三周 中國地理分區(qū) 第一節(jié) 北方地區(qū)說課稿
- 2024年三年級品社下冊《這周我當家》說課稿 遼師大版
- 5 數(shù)學廣角 - 鴿巢問題(說課稿)-2023-2024學年六年級下冊數(shù)學人教版
- 16 表里的生物(說課稿)-2023-2024學年統(tǒng)編版語文六年級下冊
- 2023九年級數(shù)學下冊 第24章 圓24.4 直線與圓的位置關系第2課時 切線的判定定理說課稿 (新版)滬科版
- 高級茶藝師技能鑒定(協(xié)會版)備考題庫-下(多選、判斷題匯總)
- 鋰離子電池健康評估及剩余使用壽命預測方法研究
- c30混凝土路面施工方案
- 頸椎骨折的護理常規(guī)課件
- 電商運營銷售計劃Excel模版
- 2022-2023學年上海市楊浦區(qū)上海同濟大附屬存志學校七年級數(shù)學第二學期期中綜合測試模擬試題含解析
- 稿件修改說明(模板)
- GB/T 33107-2016工業(yè)用碳酸二甲酯
- GB/T 16604-2017滌綸工業(yè)長絲
- 勞動合同法經典講義
- 工時定額編制標準(焊接)
評論
0/150
提交評論