西安昆侖中學(xué)2008屆高三理科數(shù)學(xué)第一輪復(fù)習(xí)講義第44課時(shí)不等式的綜合應(yīng)用_第1頁
西安昆侖中學(xué)2008屆高三理科數(shù)學(xué)第一輪復(fù)習(xí)講義第44課時(shí)不等式的綜合應(yīng)用_第2頁
西安昆侖中學(xué)2008屆高三理科數(shù)學(xué)第一輪復(fù)習(xí)講義第44課時(shí)不等式的綜合應(yīng)用_第3頁
西安昆侖中學(xué)2008屆高三理科數(shù)學(xué)第一輪復(fù)習(xí)講義第44課時(shí)不等式的綜合應(yīng)用_第4頁
西安昆侖中學(xué)2008屆高三理科數(shù)學(xué)第一輪復(fù)習(xí)講義第44課時(shí)不等式的綜合應(yīng)用_第5頁
已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、課題:不等式的綜合應(yīng)用教學(xué)目標(biāo):掌握不等式的各類綜合問題的處理方法.教學(xué)重點(diǎn):建立不等式求參數(shù)的取值范圍,利用不等式討論函數(shù)的最值,利用不等式解決實(shí)際問題(一)典例分析: 問題1 設(shè)關(guān)于的不等式和的解集依次為、求使的實(shí)數(shù)的取值范圍.問題2已知函數(shù)在上為減函數(shù),求實(shí)數(shù)的取值范圍.問題3若關(guān)于的方程有實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.解關(guān)于的不等式:().問題4已知正項(xiàng)數(shù)列中,對(duì)于一切均有成立.求證:數(shù)列中的任何一項(xiàng)都小于;探究與的大小,并加以證明.問題5(北京春)經(jīng)過長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間的函數(shù)關(guān)系為:.在該時(shí)段內(nèi),當(dāng)汽車的

2、平均速度為多少時(shí),車流量最大?最大車流量為多少?(精確到千輛/小時(shí))若要求在該時(shí)段內(nèi)車流量超過千輛/小時(shí),則汽車站的平均速度應(yīng)在什么范圍內(nèi)?(四)課后作業(yè): 數(shù)列的通項(xiàng)公式是,數(shù)列中最大的項(xiàng)是第項(xiàng)第項(xiàng)第項(xiàng)和第項(xiàng)第項(xiàng)和第項(xiàng)已知,且滿足,則的最小值為 若實(shí)數(shù)滿足,則的最大值是 設(shè),則的取值范圍是 已知是大于的常數(shù),則當(dāng)時(shí),函數(shù)的最小值為 設(shè),且,求的范圍函數(shù)在有意義,求的取值范圍周長(zhǎng)為的直角三角形面積的最大值為 設(shè),且恒成立,則的最大值為 (屆高三桐廬中學(xué)月考)若直線始終平分圓的周長(zhǎng),則的最小值為 若不等式的解集為,求正實(shí)數(shù)的取值范圍.(蘇大附中模擬)對(duì)于任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是

3、若對(duì)一切實(shí)數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.為何實(shí)數(shù)時(shí),方程的兩根都大于 光線每通過一塊玻璃板,其強(qiáng)度要減少,把幾塊這樣的玻璃板重疊起來,能使通過它們的光線強(qiáng)度在原強(qiáng)度的以下已知函數(shù).求證:函數(shù)在上是增函數(shù)若在上恒成立,求實(shí)數(shù)的取值范圍.若函數(shù)在上的值域是,求實(shí)數(shù)的取值范圍.(屆高三桐廬中學(xué)月考)已知若,求方程的解;若關(guān)于的方程在上有兩個(gè)解,求的取值范圍,并證明 (屆高三黃岡中學(xué))已知關(guān)于的不等式的解集為空集,求實(shí)數(shù)的值或取值范圍對(duì)于函數(shù),當(dāng)時(shí),有.求證:,;求證:;求證:(五)走向高考: (重慶) 設(shè)數(shù)列滿足,(,).證明對(duì)一切正整數(shù) 成立;令,判斷的大小,并說明理由 .(全國(guó))已知數(shù)列的前項(xiàng)和滿足,.寫出數(shù)列的前三項(xiàng),;求數(shù)列的通項(xiàng)公式;證明:對(duì)任意的整數(shù),有 .(江蘇)設(shè)數(shù)列的前項(xiàng)和為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論