![ch7剛體的平面運(yùn)動(dòng)_第1頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/046514aa-f49e-4ce5-a347-3ea370d09ad9/046514aa-f49e-4ce5-a347-3ea370d09ad91.gif)
![ch7剛體的平面運(yùn)動(dòng)_第2頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/046514aa-f49e-4ce5-a347-3ea370d09ad9/046514aa-f49e-4ce5-a347-3ea370d09ad92.gif)
![ch7剛體的平面運(yùn)動(dòng)_第3頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/046514aa-f49e-4ce5-a347-3ea370d09ad9/046514aa-f49e-4ce5-a347-3ea370d09ad93.gif)
![ch7剛體的平面運(yùn)動(dòng)_第4頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/046514aa-f49e-4ce5-a347-3ea370d09ad9/046514aa-f49e-4ce5-a347-3ea370d09ad94.gif)
![ch7剛體的平面運(yùn)動(dòng)_第5頁(yè)](http://file3.renrendoc.com/fileroot_temp3/2022-7/4/046514aa-f49e-4ce5-a347-3ea370d09ad9/046514aa-f49e-4ce5-a347-3ea370d09ad95.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、 剛體的平面運(yùn)動(dòng)是工程上常見的一種運(yùn)剛體的平面運(yùn)動(dòng)是工程上常見的一種運(yùn)動(dòng),這是一種較為復(fù)雜的運(yùn)動(dòng)。對(duì)它的研究可以動(dòng),這是一種較為復(fù)雜的運(yùn)動(dòng)。對(duì)它的研究可以在研究剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)的基礎(chǔ)上,通過運(yùn)在研究剛體的平動(dòng)和定軸轉(zhuǎn)動(dòng)的基礎(chǔ)上,通過運(yùn)動(dòng)合成和分解的方法,將平面運(yùn)動(dòng)分解為上述兩動(dòng)合成和分解的方法,將平面運(yùn)動(dòng)分解為上述兩種基本運(yùn)動(dòng)。然后應(yīng)用合成運(yùn)動(dòng)的理論,推導(dǎo)出種基本運(yùn)動(dòng)。然后應(yīng)用合成運(yùn)動(dòng)的理論,推導(dǎo)出平面運(yùn)動(dòng)剛體上一點(diǎn)的速度和加速度的計(jì)算公式。平面運(yùn)動(dòng)剛體上一點(diǎn)的速度和加速度的計(jì)算公式。 71 剛體平面運(yùn)動(dòng)概述剛體平面運(yùn)動(dòng)概述 72 平面圖形內(nèi)各點(diǎn)的速度平面圖形內(nèi)各點(diǎn)的速度 73 平面圖形內(nèi)
2、各點(diǎn)的加速度平面圖形內(nèi)各點(diǎn)的加速度 74 機(jī)構(gòu)運(yùn)動(dòng)分析機(jī)構(gòu)運(yùn)動(dòng)分析 習(xí)題課習(xí)題課第七章第七章 剛體的平面運(yùn)動(dòng)剛體的平面運(yùn)動(dòng)例如例如: 曲柄連桿機(jī)構(gòu)中連桿曲柄連桿機(jī)構(gòu)中連桿AB的運(yùn)動(dòng),的運(yùn)動(dòng), 其上其上A點(diǎn)作圓周運(yùn)動(dòng),點(diǎn)作圓周運(yùn)動(dòng),B點(diǎn)作直線運(yùn)動(dòng)點(diǎn)作直線運(yùn)動(dòng),因此,因此,AB 桿的運(yùn)動(dòng)既不是平動(dòng)也不是定桿的運(yùn)動(dòng)既不是平動(dòng)也不是定軸轉(zhuǎn)動(dòng),而是平面運(yùn)動(dòng)軸轉(zhuǎn)動(dòng),而是平面運(yùn)動(dòng)7-1 剛體平面運(yùn)動(dòng)的概述剛體平面運(yùn)動(dòng)的概述一、剛體平面運(yùn)動(dòng)的定義一、剛體平面運(yùn)動(dòng)的定義 在運(yùn)動(dòng)過程中,剛體上任一在運(yùn)動(dòng)過程中,剛體上任一點(diǎn)到某一固定平面的距離始終保點(diǎn)到某一固定平面的距離始終保持不變也就是說(shuō),剛體上任一持不變也就是
3、說(shuō),剛體上任一點(diǎn)都在與該固定平面平行的某一點(diǎn)都在與該固定平面平行的某一平面內(nèi)運(yùn)動(dòng)具有這種特點(diǎn)的運(yùn)平面內(nèi)運(yùn)動(dòng)具有這種特點(diǎn)的運(yùn)動(dòng)稱為剛體的平面運(yùn)動(dòng)動(dòng)稱為剛體的平面運(yùn)動(dòng)剛體的平面運(yùn)動(dòng)可以簡(jiǎn)化為剛體的平面運(yùn)動(dòng)可以簡(jiǎn)化為平面圖形平面圖形S S在其自身平面內(nèi)的運(yùn)在其自身平面內(nèi)的運(yùn)動(dòng)動(dòng)(即在研究平面運(yùn)動(dòng)時(shí),不(即在研究平面運(yùn)動(dòng)時(shí),不需考慮剛體的形狀和尺寸,只需需考慮剛體的形狀和尺寸,只需研究平面圖形的運(yùn)動(dòng),確定平面研究平面圖形的運(yùn)動(dòng),確定平面圖形上各點(diǎn)的速度和加速度)圖形上各點(diǎn)的速度和加速度)二、平面運(yùn)動(dòng)的簡(jiǎn)化二、平面運(yùn)動(dòng)的簡(jiǎn)化 為了確定代表平面運(yùn)動(dòng)剛體的平面圖形的位置,我們?yōu)榱舜_定代表平面運(yùn)動(dòng)剛體的平面圖
4、形的位置,我們只需確定平面圖形內(nèi)任意一條線段的位置只需確定平面圖形內(nèi)任意一條線段的位置 任意線段任意線段AB的位置可用的位置可用A點(diǎn)點(diǎn)(基點(diǎn))(基點(diǎn))的坐標(biāo)和的坐標(biāo)和AB與與x軸夾角表示因此圖形軸夾角表示因此圖形S 的位置決定于三個(gè)獨(dú)立的的位置決定于三個(gè)獨(dú)立的參變量所以:參變量所以:,AAyx三、平面運(yùn)動(dòng)方程三、平面運(yùn)動(dòng)方程平面運(yùn)動(dòng)方程平面運(yùn)動(dòng)方程)(1tfxA)(2tfyA)(3tf 對(duì)于每一瞬時(shí)對(duì)于每一瞬時(shí) t t ,都可以求出對(duì)應(yīng)的,都可以求出對(duì)應(yīng)的 ,圖,圖形形S S在該瞬時(shí)的位置也就確定了。在該瞬時(shí)的位置也就確定了。,AAyx 當(dāng)圖形當(dāng)圖形上上點(diǎn)不動(dòng)時(shí),則剛體作定軸轉(zhuǎn)動(dòng);點(diǎn)不動(dòng)時(shí),則
5、剛體作定軸轉(zhuǎn)動(dòng); 當(dāng)圖形當(dāng)圖形上上 角不變時(shí),則剛體作平動(dòng)。角不變時(shí),則剛體作平動(dòng)。四、平面運(yùn)動(dòng)的分解四、平面運(yùn)動(dòng)的分解故剛體平面運(yùn)動(dòng)可以看成是隨基點(diǎn)的平動(dòng)和繞基點(diǎn)的轉(zhuǎn)動(dòng)故剛體平面運(yùn)動(dòng)可以看成是隨基點(diǎn)的平動(dòng)和繞基點(diǎn)的轉(zhuǎn)動(dòng)的合成的合成例如例如車輪的運(yùn)動(dòng)車輪的運(yùn)動(dòng) 車輪的平面運(yùn)動(dòng)可以看車輪的平面運(yùn)動(dòng)可以看成是車輪隨同車廂的平動(dòng)和成是車輪隨同車廂的平動(dòng)和相對(duì)車廂的轉(zhuǎn)動(dòng)的合成相對(duì)車廂的轉(zhuǎn)動(dòng)的合成 車輪對(duì)于靜系的平面運(yùn)動(dòng)車輪對(duì)于靜系的平面運(yùn)動(dòng) (絕對(duì)運(yùn)動(dòng))(絕對(duì)運(yùn)動(dòng)) 車廂(動(dòng)系車廂(動(dòng)系A(chǔ)x y ) 相對(duì)靜系的平動(dòng)相對(duì)靜系的平動(dòng) (牽連運(yùn)動(dòng))(牽連運(yùn)動(dòng)) 車輪相對(duì)車廂(動(dòng)系車輪相對(duì)車廂(動(dòng)系A(chǔ)x y
6、)的轉(zhuǎn)動(dòng))的轉(zhuǎn)動(dòng) (相對(duì)運(yùn)動(dòng))(相對(duì)運(yùn)動(dòng)) 我們稱動(dòng)系上的原點(diǎn)我們稱動(dòng)系上的原點(diǎn)為基點(diǎn)為基點(diǎn)車輪的平面運(yùn)動(dòng)車輪的平面運(yùn)動(dòng)隨基點(diǎn)隨基點(diǎn)A的平動(dòng)的平動(dòng)繞基點(diǎn)繞基點(diǎn)A的轉(zhuǎn)動(dòng)的轉(zhuǎn)動(dòng) 剛體的平面運(yùn)動(dòng)可剛體的平面運(yùn)動(dòng)可以分解為隨基點(diǎn)的平動(dòng)以分解為隨基點(diǎn)的平動(dòng)和繞基點(diǎn)的轉(zhuǎn)動(dòng)和繞基點(diǎn)的轉(zhuǎn)動(dòng) 平面圖形在時(shí)間內(nèi)從位置I運(yùn)動(dòng)到位置IIa. 以A為基點(diǎn): 隨基點(diǎn)A平動(dòng)到AB后, 繞基點(diǎn)轉(zhuǎn) 角到ABb.以B為基點(diǎn): 隨基點(diǎn)B平動(dòng)到AB后, 繞基點(diǎn)轉(zhuǎn) 角到AB圖中看出:AB AB AB ,于是有21121122212010limlim , ; ,ttddttdtdt 五、剛體平面運(yùn)動(dòng)的角速五、剛體平面運(yùn)動(dòng)的角速度和角加速
7、度度和角加速度 平面運(yùn)動(dòng)隨基點(diǎn)平動(dòng)的運(yùn)動(dòng)規(guī)律與基點(diǎn)的選擇有關(guān),平面運(yùn)動(dòng)隨基點(diǎn)平動(dòng)的運(yùn)動(dòng)規(guī)律與基點(diǎn)的選擇有關(guān),而繞基點(diǎn)轉(zhuǎn)動(dòng)的規(guī)律與基點(diǎn)選取無(wú)關(guān)而繞基點(diǎn)轉(zhuǎn)動(dòng)的規(guī)律與基點(diǎn)選取無(wú)關(guān)(即在同一瞬間,圖形繞任一基點(diǎn)轉(zhuǎn)動(dòng)的 都是相同的) 。 基點(diǎn)的選取是任意的基點(diǎn)的選取是任意的。(通常選取運(yùn)動(dòng)情況已知的點(diǎn)作為基點(diǎn)),曲柄連桿機(jī)構(gòu)曲柄連桿機(jī)構(gòu)AB桿作平面運(yùn)動(dòng)桿作平面運(yùn)動(dòng)平面運(yùn)動(dòng)的分解平面運(yùn)動(dòng)的分解7-2平面圖形內(nèi)任一點(diǎn)的速度平面圖形內(nèi)任一點(diǎn)的速度根據(jù)速度合成定理,點(diǎn)速度為:BABA vvv一、基點(diǎn)法(合成法)一、基點(diǎn)法(合成法) 取B為動(dòng)點(diǎn), 則B點(diǎn)的運(yùn)動(dòng)可視為牽連運(yùn)動(dòng)為平動(dòng)和相對(duì)運(yùn)動(dòng)為圓周運(yùn)動(dòng)的合成,速度分
8、析如圖。; aBeArBAvvvvvv已知:圖形S內(nèi)一點(diǎn)A的速度,圖形角速度為求: 。 取A為基點(diǎn), 將動(dòng)系固結(jié)于A點(diǎn),動(dòng)系作平動(dòng)。AvBvBAvBA方向垂直于AB 由于恒有 ,因此將上式在AB連線上投影,有:BAAB v BAABAB vv速度投影定理速度投影定理 平面圖形上任意兩點(diǎn)的速度平面圖形上任意兩點(diǎn)的速度在該兩點(diǎn)連線上的投影相等在該兩點(diǎn)連線上的投影相等即平面圖形上任一點(diǎn)的速度等于基點(diǎn)的速度與該點(diǎn)隨圖形繞基即平面圖形上任一點(diǎn)的速度等于基點(diǎn)的速度與該點(diǎn)隨圖形繞基 點(diǎn)轉(zhuǎn)動(dòng)的速度的矢量和點(diǎn)轉(zhuǎn)動(dòng)的速度的矢量和二、投影法二、投影法BABA vvvcoscoscoscosABBAvvvv 三瞬心法
9、(瞬時(shí)速度中心法)三瞬心法(瞬時(shí)速度中心法) , , . PAAAvAPvPA 方方向向恰恰與與反反向向 所所以以v0PAvvAP 1速度瞬心的概念速度瞬心的概念 平面圖形S,某瞬時(shí)其上一點(diǎn)A速度 , 圖形角速度,沿 方向取半直線AL, 然后順 的轉(zhuǎn)向轉(zhuǎn)90o至AL的位置,在AL上取長(zhǎng)度 則P點(diǎn)速度為:/AvAPAvPAPA vvvAv 在某瞬時(shí)平面圖形在某瞬時(shí)平面圖形S S內(nèi)或其自身平面內(nèi)必唯一存在一點(diǎn)內(nèi)或其自身平面內(nèi)必唯一存在一點(diǎn)速度等于零,該點(diǎn)稱為平面圖形在該瞬時(shí)的瞬時(shí)速度中心,速度等于零,該點(diǎn)稱為平面圖形在該瞬時(shí)的瞬時(shí)速度中心,簡(jiǎn)稱簡(jiǎn)稱速度瞬心速度瞬心2幾種確定速度瞬心位置的方法幾種確
10、定速度瞬心位置的方法已知圖形上一點(diǎn)的速度 和圖形角速度 ,可以確定速度瞬心的位置。 即在 順 轉(zhuǎn)向繞A點(diǎn)轉(zhuǎn)90的方向 的 半垂線上,距A點(diǎn) 距離處 , ,AAvAPAP v已知一平面圖形在固定面上作無(wú)滑動(dòng)的滾 動(dòng), 則圖形與固定面的接觸點(diǎn)P為速度瞬心 AvAvAvAv( ) , ABABvvaAB 與與同同向向vv( ) , ABABvvbAB 與與反反向向vv 已知某瞬時(shí)圖形上A、B兩點(diǎn)速度 大小,且 ,則兩 速度矢端連線與AB連線之交點(diǎn)即 為速度瞬心。, ABABAB vv(b)(a) 已知某瞬間平面圖形上A,B兩點(diǎn)速度 的方向,且 ,過A , B兩點(diǎn)分 別作速度 的垂線,兩垂線交點(diǎn)P即為
11、 該瞬間的速度瞬心.,ABvv AB不不平平行行vv,ABvv,ABvv 已知某瞬時(shí)圖形上A,B兩點(diǎn)的速度方向相同,且不與AB連線 垂直,此時(shí), 圖形的瞬心在無(wú)窮遠(yuǎn)處,圖形的角速度 =0, 圖 形上各點(diǎn)速度相等, 這種情況稱為瞬時(shí)平動(dòng)瞬時(shí)平動(dòng)。 (此時(shí)各點(diǎn)的加此時(shí)各點(diǎn)的加 速度不相等速度不相等) 曲柄連桿機(jī)構(gòu)在圖示位置時(shí),連桿BC作瞬時(shí)平動(dòng)。此時(shí)連桿BC的圖形角速度 ,BC桿上各點(diǎn)的速度都相等. 但各點(diǎn)的加速度并不相等設(shè)常量,則)(2ABaanBB而的方向沿AC的,caBc aa0BC瞬時(shí)平動(dòng)與平動(dòng)的區(qū)別瞬時(shí)平動(dòng)與平動(dòng)的區(qū)別 平面圖形在任一瞬時(shí)的運(yùn)動(dòng)可以視為繞速度瞬心的瞬時(shí)轉(zhuǎn)動(dòng),速度瞬心又稱為
12、平面圖形的瞬時(shí)轉(zhuǎn)動(dòng)中心。 若P點(diǎn)為速度瞬心,則任意一點(diǎn)A的速度 ,方向AP,指向與 一致。 APvA注意:注意: 1.1.速度瞬心在平面圖形上的位置是隨時(shí)間變化的,即不同速度瞬心在平面圖形上的位置是隨時(shí)間變化的,即不同瞬時(shí)瞬心不同,在某一瞬時(shí)是唯一存在的。瞬時(shí)瞬心不同,在某一瞬時(shí)是唯一存在的。 2.2.速度瞬心處的速度為零速度瞬心處的速度為零, , 加速度不一定為零。不同于定軸加速度不一定為零。不同于定軸轉(zhuǎn)動(dòng)。轉(zhuǎn)動(dòng)。 3.3.剛體作瞬時(shí)平動(dòng)時(shí),雖然各點(diǎn)的速度相同,但各點(diǎn)的加剛體作瞬時(shí)平動(dòng)時(shí),雖然各點(diǎn)的速度相同,但各點(diǎn)的加速度是不一定相同的。不同于剛體作平動(dòng)。速度是不一定相同的。不同于剛體作平動(dòng)
13、。3. 3. 速度瞬心法速度瞬心法例:例:滾子A沿水平面作純滾動(dòng),通過連桿AB帶動(dòng)滑塊B沿鉛垂軸向上滑動(dòng)。設(shè)連桿長(zhǎng)l = 0.8m,輪心速度v0=3m/s。求當(dāng)A B與鉛垂線成 時(shí),滑塊B的速度及連桿的角速度。解:解:1.基點(diǎn)法基點(diǎn)法 取A為基點(diǎn),B點(diǎn)的速度BABA vvv330tanABvv32BAv3258 . 032ABvBAAB(m/s)(m/s)(rad/s)2. 投影法投影法30cos30cos60cos603cos30BABAvvvv (m/s)曲柄肘桿壓床機(jī)構(gòu)曲柄肘桿壓床機(jī)構(gòu)例:例:曲柄肘桿壓床機(jī)構(gòu),已知:OA=0.15m , n=300 r/min ,AB=0.76m,BC=
14、BD=0.53m。圖示位置時(shí), AB水平。求該位置時(shí)的、 及ABBD Dv解:OA、BC作定軸轉(zhuǎn)動(dòng), AB、BD均作平面運(yùn)動(dòng)rad/s103030030nP為AB速度瞬心m/s 5 . 11015. 0OAvA( )11.51.527.16 rad/ssin 600.763AABvAPAB m/s 72. 216. 75 . 076. 016. 760cos1ABBPvABB P2為其BD速度瞬心, BDP2為等邊三角形DP2=BP2=BD22.735.13 rad/s0.53BBDvBP )(m/s 72.213.553.02BDDDPv()行星齒輪機(jī)構(gòu)行星齒輪機(jī)構(gòu)解:解:OA定軸轉(zhuǎn)動(dòng),輪A
15、作平面運(yùn)動(dòng), 瞬心P點(diǎn)。,)(2211ooMrRrrRrPMvooArrRrrRv )()(方向均如圖示,)(2222ooMrRrrRrPMv例:例:行星齒輪機(jī)構(gòu),O輪固定,已知: R, r , o 輪A作純滾動(dòng), 求12,MMvv已知:曲柄連桿機(jī)構(gòu)OA=AB=l,曲柄OA以勻 轉(zhuǎn)動(dòng)。 求:當(dāng) =45時(shí), 滑塊B的速度及AB桿的角速度。 a.基點(diǎn)法 b.速度投影法 c.瞬心法課堂練習(xí)課堂練習(xí)解:解:機(jī)構(gòu)中,OA作定軸轉(zhuǎn)動(dòng),AB作平面運(yùn)動(dòng),滑塊B作平動(dòng)。 1.基點(diǎn)法基點(diǎn)法研究 AB,以 A為基點(diǎn),且 方向如圖示。B速度分析如圖。, lvAllABvllvvllvvBAABABAAB/45tgtg
16、)(245cos/ cos/())(2/,lBPvllAPvlAPlvABBAABA()cosBAvv /cos/cos452()BAvvll 不能直接求出AB研究AB, ,方向OA, 方向沿BO直線。lvABv 3.瞬心法瞬心法P點(diǎn)為AB的速度瞬心2.投影法投影法平面機(jī)構(gòu)平面機(jī)構(gòu)解:解:軸O, 桿OC, 楔塊M均作平動(dòng), 圓盤作平面運(yùn)動(dòng),P為輪O速度瞬心12 cm/s Avv rad/s 3230cos4/12cos/12/rPAvA)(m/s 343230sin4sinrPOvom722142242120cos22222OBPOOBPOPB) ( m/s 3 .182143272PBPBv
17、B)( 平面機(jī)構(gòu)中, 楔塊M: =30, v=12cm/s ; 盤: r = 4cm , 與 楔塊間無(wú)滑動(dòng)。求圓盤的及軸O的速度和B點(diǎn)速度A點(diǎn)不是輪點(diǎn)不是輪O的速度瞬心的速度瞬心 ,為什么?,為什么?(可由點(diǎn)的復(fù)合運(yùn)動(dòng)求出)(可由點(diǎn)的復(fù)合運(yùn)動(dòng)求出)7-3 平面圖形內(nèi)任一點(diǎn)的加速度平面圖形內(nèi)任一點(diǎn)的加速度取A為基點(diǎn),將平動(dòng)坐標(biāo)系固結(jié)于A點(diǎn)取B動(dòng)點(diǎn),則B點(diǎn)的運(yùn)動(dòng)分解為相對(duì)運(yùn)動(dòng)為圓周運(yùn)動(dòng)和牽連運(yùn)動(dòng)為平動(dòng)。 ; ; aBeArBAnBABAaaaaaaaa由aer aaanBA BABAaaaa一一. . 基點(diǎn)法基點(diǎn)法已知:圖形S 內(nèi)一點(diǎn)A 的加速度 和某一瞬時(shí)圖形的 , 。求: 該瞬時(shí)圖形上任一點(diǎn)B
18、的加速度。Aa其中:,方向沿AB,指向A點(diǎn);,方向AB,指向與 一致。BAaAB2ABanBA 平面圖形內(nèi)任一點(diǎn)的加速度等于基點(diǎn)的加速度與該點(diǎn)平面圖形內(nèi)任一點(diǎn)的加速度等于基點(diǎn)的加速度與該點(diǎn)隨圖形繞基點(diǎn)轉(zhuǎn)動(dòng)的切向加速度和法向加速度的矢量和隨圖形繞基點(diǎn)轉(zhuǎn)動(dòng)的切向加速度和法向加速度的矢量和。 上述公式是一平面矢量方程。需知其中六個(gè)要素,方能求上述公式是一平面矢量方程。需知其中六個(gè)要素,方能求出其余兩個(gè)。由于出其余兩個(gè)。由于 方位總是已知,所以在使用該公方位總是已知,所以在使用該公式中,只要再知道四個(gè)要素,即可解出問題的待求量。式中,只要再知道四個(gè)要素,即可解出問題的待求量。,nBABAaanBA B
19、ABAaaaa二二. . 投影法投影法nBA BABAaaaa將上式在AB連線上投影,有: nBAABABABBAaaa0n BAa若,即0 (瞬時(shí)平動(dòng))(瞬時(shí)平動(dòng))時(shí),有: BAABAB aa加速度投影法只在瞬時(shí)平動(dòng)時(shí)才能應(yīng)用加速度投影法只在瞬時(shí)平動(dòng)時(shí)才能應(yīng)用由于 的大小和方向隨B點(diǎn)的不同而不同,所以總可以在圖形內(nèi)找到一點(diǎn)Q,在此瞬時(shí),相對(duì)加速度 大小恰與基點(diǎn)A的加速度等值反向,其絕對(duì)加速度Q點(diǎn)就稱為圖形在該瞬時(shí)的加速度瞬心QAaAa0Q a1.1.一般情況下一般情況下, ,加速度瞬心與速度瞬心不是同一個(gè)點(diǎn)加速度瞬心與速度瞬心不是同一個(gè)點(diǎn), nBABAaa三加速度瞬心法三加速度瞬心法 2.2
20、.由于加速度瞬心的位置不象速度瞬心那樣容易確定,由于加速度瞬心的位置不象速度瞬心那樣容易確定,且一且一 般情況下又不存在類似于速度投影定理的關(guān)系式,般情況下又不存在類似于速度投影定理的關(guān)系式,故常采用基點(diǎn)法求圖形上各點(diǎn)的加速度或圖形角加速度故常采用基點(diǎn)法求圖形上各點(diǎn)的加速度或圖形角加速度注意:注意:大小 ? 2 方向 ? nPOPOPO aaaa/OvR () 例:例:半徑為R的車輪沿直線作純滾動(dòng), 已知輪心O點(diǎn)的速度及加速度 ,求車輪與軌道接觸點(diǎn)P的加速度,OOva解:解:輪O作平面運(yùn)動(dòng),P為其速度瞬心,由于此式在任何瞬時(shí)都成立,且O點(diǎn)作直線運(yùn)動(dòng),故而1OOdvaddtR dtR ()以O(shè)為
21、基點(diǎn),P點(diǎn)加速度分析如圖。R 由此看出,速度瞬心由此看出,速度瞬心P的加速度并不等于零,即它不是加速度的加速度并不等于零,即它不是加速度瞬心。當(dāng)車輪沿固定的直線軌道作純滾動(dòng)時(shí),其速度瞬心瞬心。當(dāng)車輪沿固定的直線軌道作純滾動(dòng)時(shí),其速度瞬心P的加的加速度指向輪心速度指向輪心222 () nOOPOPOOvvaRRRRaRa nPPO aaPOOa= -a2( )OPvaR 解:解:(a) AB作平動(dòng), , ( , )nnABABABAB vvaaaaaa1122112212/, /; /, /; ABABvO AvO BaO AaO BO AO B 又又而而1212;. 例例:已知O1A=O2B,
22、 圖示瞬時(shí) O1A/O2B 試問(a),(b)兩種情況下1和 2, 和 是否相等?(a)(b)12(b) AB作平面運(yùn)動(dòng), 圖示瞬時(shí)作瞬時(shí)平動(dòng), 此時(shí)0,ABAB vv12112212, /, /, ABO AO BvO AvO B , nnABAABBABABABABABAB即即aaaaaa2211112222sincossincosO AO AO BO B 2211122cot ,ABAB 作作瞬瞬時(shí)時(shí)平平動(dòng)動(dòng)并并看看出出時(shí)時(shí)即即由由此此aa曲柄滾輪機(jī)構(gòu)曲柄滾輪機(jī)構(gòu)例例:曲柄滾輪機(jī)構(gòu),滾子半徑R=15cm, n=60 r/min 求:當(dāng) =60時(shí) (OAAB),滾輪的、 。B解解:OA定軸
23、轉(zhuǎn)動(dòng),AB桿和輪B作平面運(yùn)動(dòng)rad/s 32153 /30/1APvAAB()cm/s 30215rad/s 230/6030/OAvnAP為AB速度瞬心,P2為輪B速度瞬心)(cm/s 3203215321ABBBPv分析分析: 要想求出滾輪的、 ,先要求出vB、aBP2P1vBBrad/s25. 715/320/2BPvBB)(以A為基點(diǎn),B點(diǎn)加速度分析如圖。2222cm/s60)2(15OAaA指向O點(diǎn)nBABABAaaaa222220 33 15 (),33nBAABaABBA 沿沿大小 ? ?方向 將上式向BA線上投影cos3000nBBAaa )(cm/s5 .13134023/3
24、32030cos/222nBABaa22/131.5/158.77rad/sBBaBP )(7-4 機(jī)構(gòu)運(yùn)動(dòng)分析機(jī)構(gòu)運(yùn)動(dòng)分析 一個(gè)運(yùn)動(dòng)機(jī)構(gòu)或運(yùn)動(dòng)系統(tǒng)是由多種運(yùn)動(dòng)的點(diǎn)和剛一個(gè)運(yùn)動(dòng)機(jī)構(gòu)或運(yùn)動(dòng)系統(tǒng)是由多種運(yùn)動(dòng)的點(diǎn)和剛體組成,各構(gòu)件之間通過鉸鏈、套筒、銷釘、滑塊等體組成,各構(gòu)件之間通過鉸鏈、套筒、銷釘、滑塊等聯(lián)接點(diǎn)傳遞運(yùn)動(dòng)。由已知運(yùn)動(dòng)的構(gòu)件,通過對(duì)某些聯(lián)聯(lián)接點(diǎn)傳遞運(yùn)動(dòng)。由已知運(yùn)動(dòng)的構(gòu)件,通過對(duì)某些聯(lián)結(jié)點(diǎn)和剛體的運(yùn)動(dòng)分析,確定機(jī)構(gòu)中所有構(gòu)件的運(yùn)動(dòng),結(jié)點(diǎn)和剛體的運(yùn)動(dòng)分析,確定機(jī)構(gòu)中所有構(gòu)件的運(yùn)動(dòng),稱為機(jī)構(gòu)運(yùn)動(dòng)分析。分析機(jī)構(gòu)運(yùn)動(dòng)時(shí),先應(yīng)分析各構(gòu)稱為機(jī)構(gòu)運(yùn)動(dòng)分析。分析機(jī)構(gòu)運(yùn)動(dòng)時(shí),先應(yīng)分析各構(gòu)件作什么運(yùn)動(dòng),計(jì)算
25、各聯(lián)結(jié)點(diǎn)速度和加速度,再計(jì)算件作什么運(yùn)動(dòng),計(jì)算各聯(lián)結(jié)點(diǎn)速度和加速度,再計(jì)算待求未知量。待求未知量。例:例:行星齒輪減速機(jī)構(gòu)。已知各齒輪的節(jié)圓半徑r1、r2、r3,求傳動(dòng)比i1H(即 / )。1H解:解:P點(diǎn)為輪2的速度瞬心,輪1與輪2的嚙合點(diǎn)A的速度211APAOvA22112rr輪2與系桿H的聯(lián)結(jié)點(diǎn)O2的速度HOOOPOv21222Hrrr)(2122Hrrr)(221113121)(2rrrr13131111HHrrzzirz 由于故解解: OA定軸轉(zhuǎn)動(dòng) ; AB, BC均作平面運(yùn)動(dòng), 滑塊B和C均作平動(dòng)對(duì)AB桿應(yīng)用速度投影定理:30cos60cosABvvoABrvv33 對(duì)BC桿應(yīng)用速
26、度投影定理:60sinBcvv )( oocrrv23233例:例:已知已知:配氣機(jī)構(gòu)中,OA= r , 以等 o轉(zhuǎn)動(dòng), 在某瞬時(shí) = 60 ABBC, AB=6 r , BC= . 求求 該瞬時(shí)滑塊C的 速度和加速度r331.速度分析速度分析以A為基點(diǎn)求B點(diǎn)加速度:nBABABA aaaa( a ),22ABnBAoAABara P1為AB桿速度瞬心,而rAP31122,332 6()33ooAABnoBAorvAPrarr (a)式沿BA方向投影222 cos60cos60 433nBABABoooaaararr 2.加速度分析加速度分析P2 為BC速度瞬心,而 P2C = 9 r再以B為
27、基點(diǎn), 求C點(diǎn)加速度。691232oocBCrrCPv 222333()612noCBBCoaBCrr 將 (b) 式在BC方向線上投影222333cos30321212ncBCBoooraaarr 注注 指向可假設(shè),結(jié)果為正說(shuō)明假設(shè)指向與實(shí)際指向指向可假設(shè),結(jié)果為正說(shuō)明假設(shè)指向與實(shí)際指向相同;結(jié)果為負(fù),說(shuō)明假設(shè)指向與實(shí)際指向相反相同;結(jié)果為負(fù),說(shuō)明假設(shè)指向與實(shí)際指向相反,BCaa30nCBCBCB aaaa( b )平面機(jī)構(gòu)平面機(jī)構(gòu)運(yùn)動(dòng)學(xué)綜合舉例運(yùn)動(dòng)學(xué)綜合舉例例:例: 平面機(jī)構(gòu),圖示瞬時(shí), O點(diǎn)在AB中點(diǎn), =60,BCAB, 已知O,C在同一水平線上, AB=20cm,vA=16cm/s
28、,試求試求該瞬時(shí)AB桿, BC桿的角速度及滑塊C的速度解解:輪A, 桿AB, 桿BC均作平面運(yùn)動(dòng), 套筒O作定軸轉(zhuǎn)動(dòng), 滑塊C平動(dòng). , 由于沿AB, 所以方向沿AB并且與反向。 從而確定了AB桿上與O點(diǎn)接觸點(diǎn)的速度方向。 所以P1為AB速度瞬心0, arv vevaer vvvrv取套筒上O點(diǎn)為動(dòng)點(diǎn), 動(dòng)系固結(jié)于AB桿; 靜系固結(jié)于機(jī)架,1.速度分析速度分析16cm/sCBvv P2為BC的速度瞬心。cm/s 1611AABABBvAPBPvrad/s 35460sin/1016sin/161OAAPvAAB)(()2160.92 rad/s10 3CBCvP C cos30cos30CBv
29、v 2210 3cmPCP BBC導(dǎo)桿滑槽機(jī)構(gòu)導(dǎo)桿滑槽機(jī)構(gòu)解解:動(dòng)點(diǎn):CD桿上C為,動(dòng)系:固結(jié)于AE(平面運(yùn)動(dòng))靜系:固結(jié)于機(jī)架acer v =vvvCAC Aevvvv例:例:導(dǎo)桿滑槽機(jī)構(gòu),已知圖示瞬時(shí), 桿AB速度u ,桿CD 速度v及 角,AC= l , 求導(dǎo)槽AE的角速度(a) C 點(diǎn)為AE上與C點(diǎn)重合的那點(diǎn)(牽連點(diǎn)),其速度以A點(diǎn)為基點(diǎn)來(lái)求。(b)將 (b) 代入 (a) 得:CAC Ar vvvvsin cos sincos uvvvvvACACAC即luvACvACAEsincos ()(c)式投影至 軸速度分析如圖速度分析如圖vCv,vAu(c)例:例:圖示機(jī)構(gòu)中,AB桿一端連
30、接滾子A,滾子的中心A以速度 cm/s沿水平方向勻速運(yùn)動(dòng),AB桿活套在可繞O軸轉(zhuǎn)動(dòng)的套管C內(nèi)。求AB桿的角速度和角加速度。16Av解:解:(1)求AB桿的角速度PAvAAB28. 15 .1216PAvA(rad/s) tanABABCvPCAC 6 . 928. 1866822(cm/s) 其中5 .128cos2CACAPAcmC 是是AB桿上與套筒桿上與套筒C重合的那點(diǎn)重合的那點(diǎn)。(2)求AB桿的角加速度取AB桿為研究對(duì)象。選A為基點(diǎn),其上C點(diǎn)的加速度為nACACACaaaa大小 ? 0 ? 方向 ? 0 ABACACa2ABnACACa其中有三個(gè)未知要素,需另找補(bǔ)充方程有三個(gè)未知要素,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新《行政處罰法》知識(shí)學(xué)習(xí)考試題庫(kù)500題(含答案)
- 2025年福建省職教高考《語(yǔ)文》考前沖刺模擬試題庫(kù)(附答案)
- 2025年桂林生命與健康職業(yè)技術(shù)學(xué)院高職單招語(yǔ)文2018-2024歷年參考題庫(kù)頻考點(diǎn)含答案解析
- 10kV配電站房工程的成本控制與優(yōu)化策略
- 國(guó)標(biāo)柴油購(gòu)銷合同
- 居間合同委托書范文年
- 煙草產(chǎn)品購(gòu)銷合同
- 注冊(cè)規(guī)劃師聘用合同
- 土地平整工程承包合同
- 正規(guī)設(shè)備買賣交易合同
- 2024年北京東城社區(qū)工作者招聘筆試真題
- 無(wú)子女離婚協(xié)議書范文百度網(wǎng)盤
- 一年級(jí)數(shù)學(xué)個(gè)位數(shù)加減法口算練習(xí)題大全(連加法-連減法-連加減法直接打印版)
- 五年級(jí)上冊(cè)數(shù)學(xué)試題試卷(8篇)
- 五年級(jí)上冊(cè)小數(shù)遞等式計(jì)算200道及答案
- 冀教版五年級(jí)下冊(cè)數(shù)學(xué)全冊(cè)教學(xué)課件
- T-SDASTC 006-2023 眩暈病中西醫(yī)結(jié)合基層診療指南
- 安全個(gè)人承諾書范文個(gè)人承諾書范文
- 遠(yuǎn)視儲(chǔ)備培訓(xùn)課件
- 嶺南膏方規(guī)范
- 【可行性報(bào)告】2023年虛擬演播室制作設(shè)備相關(guān)行業(yè)可行性分析報(bào)告
評(píng)論
0/150
提交評(píng)論