版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、第五章 本錢與利潤函數(shù)要素需求函數(shù)短期本錢函數(shù)與長期本錢函數(shù)學(xué)習(xí)曲線與本錢次可加性利潤函數(shù)與供應(yīng)函數(shù).一、要素需求函數(shù)要素需求函數(shù)的推導(dǎo):要素需求函數(shù)的推導(dǎo)普通有兩種方法,即利潤最大化規(guī)劃推導(dǎo)和本錢最小化規(guī)劃推導(dǎo)。利潤最大化規(guī)劃推導(dǎo)。從利潤公式出發(fā),利潤是總收入與總本錢之差。即 pq-c 這里pf(x1,x2)x1和x2兩種消費(fèi)要素,c=r1x1+r2x2+b(r1和r2為兩種要素對應(yīng)的價錢。b為固定本錢,從而求要素需求函數(shù)就相應(yīng)的為解下面的利潤最大化問題。 .讓對x1和x2分別求偏導(dǎo),并令其一階偏導(dǎo)為那么有。下面一柯布道格拉斯消費(fèi)函數(shù)為例.本錢最小化推導(dǎo)法即求下面本錢最小化規(guī)劃求解過程與利潤
2、最大化一樣,這里省略。.要素價錢變化對要素需求量的影響。先引入消費(fèi)函數(shù)凹性概念。定義我們說f(x1,x2)為凹函數(shù),假設(shè)f110,f220 并且.當(dāng)滿足凹性時,消費(fèi)函數(shù)最大化問題有解.我們來看r1對x1的影響,.如今來看r2對x1的影響同理要素的價錢對要素的需求的影響,和要素的價錢對它本身的影響可以相應(yīng)的得出。.二、短期本錢函數(shù)與長期本錢函數(shù)短期本錢函數(shù)的定義.短期本錢函數(shù)以下式表示本錢函數(shù)C=(q,r1,r2)+b 但是在短期,要素價錢是給定的所以,本錢函數(shù)只是產(chǎn)量q的函數(shù),于是C=( q )+b C有時寫成TC,即總本錢.平均本錢與邊沿本錢的關(guān)系A(chǔ)TC=C/q= ( q )+b / q 總
3、本錢包括不變本錢FC和可變本錢VC,平均可變本錢記為AVC= ( q )/q 平均固定不變本錢記為AFC=b / q 邊沿本錢MC是產(chǎn)出量增量所導(dǎo)致的本錢增量,MC= ( q )=dc / dq.MCATCAVCAFCOq平均本錢、平均可變本錢、平均固定本錢與邊沿本錢之間的關(guān)系在平均本錢的最低點(diǎn),邊沿本錢等于平均本錢。當(dāng)MC=AVC時,是AVC的最低點(diǎn),假設(shè)MCAVC那么會使AVC上升。.ACMCOqACMCOqACMCOqACMCACMCAC=MC假設(shè)MC不斷高于AC,那么AC不斷上升,一定會有規(guī)模報酬遞減。假設(shè)MC不斷等于AC,那么AC不變,一定會有規(guī)模報酬不變。假設(shè)MC不斷低于AC,那么
4、AC下降,一定會有規(guī)模報酬遞增。.本錢函數(shù)的二階性質(zhì)。利潤極大化的一階條件:二階條件:即邊沿本錢是遞減的。.三、學(xué)習(xí)曲線和本錢次可加性學(xué)習(xí)曲線:有些企業(yè)的長期唱本(LAC)曲線能夠會逐漸下降。這種LAC的逐漸下降能夠來自于企業(yè)隨產(chǎn)出量的積累而不斷進(jìn)展的“學(xué)習(xí),即“邊干邊學(xué)。思索兩個時期,t=1,2。每個時期有產(chǎn)出量q,于是兩時期產(chǎn)量分別為q1,q2。第一期的本錢為C1(q1),第二期的本錢為C2(q2, q1)?!皩W(xué)習(xí)效應(yīng)是指dC2/dC10。如,那么L=A+B,這時單位產(chǎn)出的勞動投入量為一常數(shù),N添加不會引起L的減少,所以不存在學(xué)習(xí)效應(yīng)。 ,那么L=A+BN,那么,隨著N趨于無窮,L 接近A
5、。這時學(xué)習(xí)效應(yīng)是充分的。在通常情況下, 0。如,那么L=A+B,這時單位產(chǎn)出的勞動投入量為一常數(shù),N添加不會引起L的減少,所以不存在學(xué)習(xí)效應(yīng)。 ,那么L=A+BN,那么,隨著N趨于無窮,L 接近A。這時學(xué)習(xí)效應(yīng)是充分的。在通常情況下, 1, 的大小表示“學(xué)習(xí)效應(yīng)的大小。.兩個根本定理定理邊沿本錢在任何地方都遞減意味著平均本錢在任何地方都遞減。定理平均本錢在任何地方都遞減意味著消費(fèi)是次可加的。.四、利潤函數(shù)和供應(yīng)函數(shù)利潤函數(shù)的定義:企業(yè)的利潤函數(shù)只取決于投入品價錢與產(chǎn)出品價錢,利潤函數(shù)可以定義為以下最大值函數(shù)。利潤函數(shù)一定指最大利潤是存在的,并且這個最大利潤只依賴于p, r。.利潤函數(shù)的性質(zhì).供
6、應(yīng)函數(shù)的求法有三種求供應(yīng)函數(shù)的方法分別從利潤函數(shù)、消費(fèi)函數(shù)和本錢函數(shù)求出供應(yīng)函數(shù)。從利潤函數(shù)求:有霍太林引理,假設(shè)知道一家企業(yè)的消費(fèi)函數(shù),求出該企業(yè)的利潤函數(shù),再對利潤函數(shù)求偏導(dǎo)既得供應(yīng)函數(shù)。也就是霍太林引理。Y( p, r)既為供應(yīng)函數(shù).從消費(fèi)函數(shù)直接求供應(yīng)函數(shù)假設(shè)一個消費(fèi)函數(shù)F(x1,x2)是一個嚴(yán)厲凹函數(shù),那么利潤極大化問題有解。我們先求出要素的條件需求函數(shù),然后將該條件需求函數(shù)代入消費(fèi)函數(shù),就得到企業(yè)的供應(yīng)函數(shù)。.從本錢函數(shù)求供應(yīng)函數(shù)企業(yè)的利潤函數(shù)表達(dá)式q =pq-Cq假設(shè)利潤極大化問題有解,那么滿足利潤極大化時的一階條件。p=MC 可以有此式直接求q。.消費(fèi)者剩余短期消費(fèi)者剩余定義短期消費(fèi)者剩余:短期的消費(fèi)者剩余是指企業(yè)參與市場買賣供應(yīng)大于較之不參與市場買賣而言的福利改良。其數(shù)額可由市場價錢p線與短期邊沿本錢線MC之間的面積來衡量。.qQ*FP,MCS=MC消費(fèi)者剩余p*短期消費(fèi)者剩余.長期消費(fèi)者剩余定義長
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門店過戶合同
- 金融街二手房交易居間合同范本
- 煙草企業(yè)應(yīng)屆生勞動合同模板
- 體育用品辦公室租賃合同
- 庭院植物種植施工合同
- 購物中心擴(kuò)建工程聘用協(xié)議
- 森林資源保護(hù)護(hù)林員勞動合同
- 邯鄲市物業(yè)員工培訓(xùn)與考核辦法
- 轉(zhuǎn)讓科技成果合同范本(2篇)
- 公路橋梁合同審核注意哪些問題
- 2024年世界職業(yè)院校技能大賽中職組“水利工程制圖與應(yīng)用組”賽項(xiàng)考試題庫(含答案)
- 常見的氨基酸的分類特點(diǎn)及理化性質(zhì)
- 廣東省廣州市越秀區(qū)2023-2024學(xué)年八年級上學(xué)期期末語文試題(解析版)
- 【碳足跡報告】新鄉(xiāng)市錦源化工對位脂產(chǎn)品碳足跡報告
- 《工業(yè)機(jī)器人系統(tǒng)集成》課標(biāo)
- 2024年高爾夫球車項(xiàng)目可行性研究報告
- 過敏反應(yīng)的分類和護(hù)理
- 民事陪審員培訓(xùn)課件
- 湖南財(cái)政經(jīng)濟(jì)學(xué)院《世界市場行情》2023-2024學(xué)年第一學(xué)期期末試卷
- 靈活用工模式下的薪酬管理
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)師承及確有專長考核考試近5年真題集錦(頻考類試題)帶答案
評論
0/150
提交評論