版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、2021-2022高考數(shù)學模擬試卷注意事項1考生要認真填寫考場號和座位序號。2試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B 鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為( )ABC6D與點O的位置有關(guān)2已知數(shù)列為等差數(shù)列,為其前 項和,則( )ABCD3若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為( )A
2、2BCD4為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經(jīng)過統(tǒng)計繪制如圖,其中各項統(tǒng)計不重復(fù)若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A該市總有 15000 戶低收入家庭B在該市從業(yè)人員中,低收入家庭共有1800戶C在該市無業(yè)人員中,低收入家庭有4350戶D在該市大于18歲在讀學生中,低收入家庭有 800 戶5已知集合,若,則( )A4B4C8D86高斯是德國著名的數(shù)學家,近代數(shù)學奠基者之一,享有“數(shù)學王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,已知函數(shù)(),則函數(shù)的值域為( )ABCD7已知正項等比數(shù)列的前項和為
3、,且,則公比的值為()AB或CD8已知為等腰直角三角形,為所在平面內(nèi)一點,且,則( )ABCD9已知函數(shù)的圖像上有且僅有四個不同的關(guān)于直線對稱的點在的圖像上,則的取值范圍是( )ABCD10已知集合,則( )ABCD11若雙曲線:的一條漸近線方程為,則( )ABCD12在空間直角坐標系中,四面體各頂點坐標分別為:假設(shè)螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點那么完成這個工作所需要走的最短路徑長度是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知點是拋物線上動點,是拋物線的焦點,點的坐標為,則的最小值為_14已知,滿足約束條件,則的最小值
4、為_.15在的二項展開式中,所有項的系數(shù)之和為1024,則展開式常數(shù)項的值等于_16已知關(guān)于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是_三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)如圖,直線y=2x-2與拋物線x2=2py(p0)交于M1,M2兩點,直線y=p2與y軸交于點F,且直線y=p2恰好平分M1FM2.(1)求p的值;(2)設(shè)A是直線y=p2上一點,直線AM2交拋物線于另一點M3,直線M1M3交直線y=p2于點B,求OAOB的值.18(12分)在平面直角坐標系xOy中,曲線C的參數(shù)方程為(為參數(shù)).以原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相等
5、的長度單位,建立極坐標系.(1)設(shè)直線l的極坐標方程為,若直線l與曲線C交于兩點AB,求AB的長;(2)設(shè)M、N是曲線C上的兩點,若,求面積的最大值.19(12分)P是圓上的動點,P點在x軸上的射影是D,點M滿足(1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;(2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以O(shè)A,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程20(12分)已知點,直線與拋物線交于不同兩點、,直線、與拋物線的另一交點分別為兩點、,連接,點關(guān)于直線的對稱點為點,連接、(1)證明:;(2)若的面積,求的取值范圍21(12分)在等比數(shù)列中,已知,.設(shè)數(shù)列的前n項和為,
6、且,(,).(1)求數(shù)列的通項公式;(2)證明:數(shù)列是等差數(shù)列;(3)是否存在等差數(shù)列,使得對任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請說明理由.22(10分)如圖,在平面直角坐標系中,橢圓的離心率為,且過點.求橢圓的方程;已知是橢圓的內(nèi)接三角形,若點為橢圓的上頂點,原點為的垂心,求線段的長;若原點為的重心,求原點到直線距離的最小值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1B【解析】根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是
7、由棱長為2的正方體挖去一個四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎(chǔ)題.2B【解析】利用等差數(shù)列的性質(zhì)求出的值,然后利用等差數(shù)列求和公式以及等差中項的性質(zhì)可求出的值.【詳解】由等差數(shù)列的性質(zhì)可得,.故選:B.【點睛】本題考查等差數(shù)列基本性質(zhì)的應(yīng)用,同時也考查了等差數(shù)列求和,考查計算能力,屬于基礎(chǔ)題.3B【解析】由題中垂直關(guān)系,可得漸近線的方程,結(jié)合,構(gòu)造齊次關(guān)系即得解【詳解】雙曲線的一條漸近線與直線垂直雙曲線的漸近線方程
8、為,得則離心率故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數(shù)學運算的能力,屬于中檔題.4D【解析】根據(jù)給出的統(tǒng)計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭9006%15000(戶),A正確,該市從業(yè)人員中,低收入家庭共有1500012%1800(戶),B正確,該市無業(yè)人員中,低收入家庭有1500029%4350(戶),C正確,該市大于18 歲在讀學生中,低收入家庭有150004%600(戶),D錯誤故選:D.【點睛】本題主要考查對統(tǒng)計圖表的認識和分析,這類題要認真分析
9、圖表的內(nèi)容,讀懂圖表反映出的信息是解題的關(guān)鍵,屬于基礎(chǔ)題.5B【解析】根據(jù)交集的定義,可知,代入計算即可求出.【詳解】由,可知,又因為,所以時,解得.故選:B.【點睛】本題考查交集的概念,屬于基礎(chǔ)題.6B【解析】利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因為(),所以,令(),則(),函數(shù)的對稱軸方程為,所以,所以,所以的值域為.故選:B【點睛】本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識,考查學生分析問題,解決問題的能力,運算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識.7C【解析】由可得,故可求的值.【詳解】因為,所以,故,因為正項
10、等比數(shù)列,故,所以,故選C.【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)公比時,則有,其中為常數(shù)且;(3) 為等比數(shù)列( )且公比為.8D【解析】以AB,AC分別為x軸和y軸建立坐標系,結(jié)合向量的坐標運算,可求得點的坐標,進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.9D【解析】根據(jù)對稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個不同的交點;利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點,通過數(shù)形結(jié)合的方式可確定;利
11、用過某一點曲線切線斜率的求解方法可求得和,進而得到結(jié)果.【詳解】關(guān)于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設(shè),則,解得:設(shè),則,解得:,則本題正確選項:【點睛】本題考查根據(jù)直線與曲線交點個數(shù)確定參數(shù)范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對稱性將問題轉(zhuǎn)化為直線與曲線交點個數(shù)的問題,通過確定直線恒過的定點,采用數(shù)形結(jié)合的方式來進行求解.10C【解析】解不等式得出集合A,根據(jù)交集的定義寫出AB【詳
12、解】集合Ax|x22x30 x|1x3,故選C【點睛】本題考查了解不等式與交集的運算問題,是基礎(chǔ)題11A【解析】根據(jù)雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎(chǔ)題.12C【解析】將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊易求得,由,知,由余弦定理知其中,故選:C【點睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學生的空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13【
13、解析】過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當和拋物線相切時,的值最小.再利用直線的斜率公式、導(dǎo)數(shù)的幾何意義求得切點的坐標,從而求得的最小值.【詳解】解:由題意可得,拋物線的焦點,準線方程為,過點作垂直于準線,為垂足,則由拋物線的定義可得,則,為銳角.故當最小時,的值最小.設(shè)切點,由的導(dǎo)數(shù)為,則的斜率為,求得,可得,.故答案為:.【點睛】本題考查拋物線的定義,性質(zhì)的簡單應(yīng)用,直線的斜率公式,導(dǎo)數(shù)的幾何意義,屬于中檔題.14【解析】作出約束條件所表示的可行域,利用直線截距的幾何意義,即可得答案.【詳解】畫出可行域易知在點處取最小值為.故答案為:【點睛】本題考查簡單線性規(guī)劃
14、的最值,考查數(shù)形結(jié)合思想,考查運算求解能力,屬于基礎(chǔ)題.15【解析】利用展開式所有項系數(shù)的和得n=5,再利用二項式展開式的通項公式,求得展開式中的常數(shù)項.【詳解】因為的二項展開式中,所有項的系數(shù)之和為4n=1024, n=5,故的展開式的通項公式為Tr+1=C35-r,令,解得r=4,可得常數(shù)項為T5=C3=15,故填15.【點睛】本題主要考查了二項式定理的應(yīng)用、二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于中檔題.16【解析】先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出【詳解】因為關(guān)于的方程在區(qū)間上恰有兩個解,令,所以方程在 上只有一解,即有 ,直
15、線與 在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學生運用轉(zhuǎn)化與化歸思想的能力,方程有解問題轉(zhuǎn)化成兩函數(shù)的圖像有交點問題,是常見的轉(zhuǎn)化方式三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)p=4;(2)OAOB=20.【解析】試題分析:(1)聯(lián)立直線的方程和拋物線的方程y=2x-2x2=2py,化簡寫出根與系數(shù)關(guān)系,由于直線y=p2平分M1FM2,所以kM1F+kM2F=0,代入點的坐標化簡得4-(2+p2)x1+x2x1x2=0,結(jié)合跟魚系數(shù)關(guān)系,可求得p=4;(2)設(shè)M3(x3,x
16、328),A(t,2),B(a,2),由A,M2,M3,三點共線得kM2M3=kAM2,再次代入點的坐標并化簡得x2x3-t(x2+x3)=-16,同理由B,M3,M1三點共線,可得x1x3-a(x1+x3)=-16,化簡得at=16,故OAOB=at+4=16+4=20.試題解析:(1)由y=2x-2x2=2py,整理得x2-4px+4p=0,設(shè)M1(x1,y1),M2(x2,y2),則=16p2-16p0 x1+x2=4px1x2=4p,因為直線y=p2平分M1FM2,kM1F+kM2F=0,所以y1-p2x1+y2-p2x2=0,即2x1-2-p2x1+2x2-2-p2x2=0,所以4-
17、(2+p2)x1+x2x1x2=0,得p=4,滿足0,所以p=4.(2)由(1)知拋物線方程為x2=8y,且x1+x2=16x1x2=16,M1(x1,x128),M2(x2,x228),設(shè)M3(x3,x328),A(t,2),B(a,2),由A,M2,M3,三點共線得kM2M3=kAM2,所以x2+x38=x228-2x2-t,即,整理得:x2x3-t(x2+x3)=-16,由B,M3,M1三點共線,可得x1x3-a(x1+x3)=-16,式兩邊同乘x2得:x1x2x3-a(x1x2+x2x3)=-16x2,即:16x3-a(16+x2x3)=-16x2,由得:x2x3=t(x2+x3)-1
18、6,代入得:16x3-16a-ta(x2+x3)+16a=-16x2,即:16(x2+x3)=at(x2+x3),所以at=16.所以O(shè)AOB=at+4=16+4=20.考點:直線與圓錐曲線的位置關(guān)系.【方法點晴】本題考查直線與拋物線的位置關(guān)系.閱讀題目后明顯發(fā)現(xiàn),所有的點都是由直線和拋物線相交或者直線與直線相交所得.故第一步先聯(lián)立y=2x-2x2=2py,相當于得到M1,M2的坐標,但是設(shè)而不求.根據(jù)直線y=p2平分M1FM2,有kM1F+kM2F=0,這樣我們根據(jù)斜率的計算公式k=y2-y1x2-x1,代入點的坐標,就可以計算出p的值.第二問主要利用三點共線來求解.18(1);(2)1.【
19、解析】(1)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(2),由(1)通過計算得到,即最大值為1.【詳解】(1)將曲線C的參數(shù)方程化為普通方程為,即;再將,代入上式,得,故曲線C的極坐標方程為,顯然直線l與曲線C相交的兩點中,必有一個為原點O,不妨設(shè)O與A重合,即.(2)不妨設(shè),則面積為當,即取時,.【點睛】本題考查參數(shù)方程、普通方程、極坐標方程間的互化,三角形面積的最值問題,是一道容易題.19(1)點M的軌跡C的方程為,軌跡C是以,為焦點,長軸長為4的橢圓(2)【解析】(1)設(shè),根據(jù)可求得,代入圓的方程可得所求軌跡方程;根據(jù)軌跡方程可知軌跡是以,為焦點,長軸長為的橢圓;(2)設(shè),與
20、橢圓方程聯(lián)立,利用求得;利用韋達定理表示出與,根據(jù)平行四邊形和向量的坐標運算求得,消去后得到軌跡方程;根據(jù)求得的取值范圍,進而得到最終結(jié)果.【詳解】(1)設(shè),則由知:點在圓上 點的軌跡的方程為:軌跡是以,為焦點,長軸長為的橢圓(2)設(shè),由題意知的斜率存在設(shè),代入得:則,解得:設(shè),則四邊形為平行四邊形又 ,消去得: 頂點的軌跡方程為【點睛】本題考查圓錐曲線中的軌跡方程的求解問題,關(guān)鍵是能夠利用已知中所給的等量關(guān)系建立起動點橫縱坐標滿足的關(guān)系式,進而通過化簡整理得到結(jié)果;易錯點是求得軌跡方程后,忽略的取值范圍.20(1)見解析;(2)【解析】(1)設(shè)點、,求出直線、的方程,與拋物線的方程聯(lián)立,求出
21、點、的坐標,利用直線、的斜率相等證明出;(2)設(shè)點到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長公式計算出,即可得出關(guān)于的表達式,結(jié)合不等式可解出實數(shù)的取值范圍.【詳解】(1)設(shè)點、,則,直線的方程為:,由,消去并整理得,由韋達定理可知,代入直線的方程,得,解得,同理,可得,,代入得,因此,;(2)設(shè)點到直線、的距離分別為、,則,由(1)知,同理,得,由,整理得,由韋達定理得,得,設(shè)點到直線的高為,則,解得,因此,實數(shù)的取值范圍是.【點睛】本題考查直線與直線平行的證明,考查實數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達定理、弦長公式、直線的斜率等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是難題21(1)(2)見解析(3)存在唯一的等差數(shù)列,其通項公式為,滿足題設(shè)【解析】(1)由,可得公比,即得;(2)由(1)和可得數(shù)列的遞推公式,即可知結(jié)果為常數(shù),即得證;(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三月戶外活動方案百
- 氣排球活動方案
- 平面向量基礎(chǔ)試題(一)
- 木結(jié)構(gòu)屋檐線條施工方案
- 2024年采購合同價款調(diào)整補充協(xié)議
- 2025學校食堂食品采購合同范本
- 2025防火涂料承包合同
- 珠寶品牌總經(jīng)理協(xié)議高端定制
- 藝術(shù)品策展人聘用協(xié)議范本
- 滑雪場臨時設(shè)施施工合同
- 跟蹤審計服務(wù) 投標方案(技術(shù)方案)
- 廣東省汕頭市金平區(qū)2023-2024學年七年級上學期期末語文試題
- (2024年)電工安全培訓(xùn)(新編)課件
- 2024年度新型紡織纖維
- 培訓(xùn)機構(gòu)五年發(fā)展規(guī)劃方案
- 《銷售主管競聘》課件
- 青少年型青光眼個案護理
- 2024年形式與政策論文
- 機電設(shè)備故障診斷與維修(高職)全套教學課件
- 建設(shè)銀行新員工培訓(xùn)方案
- 2024年綠色生產(chǎn)培訓(xùn)資料
評論
0/150
提交評論