黑龍江綏化2021-2022學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第1頁
黑龍江綏化2021-2022學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第2頁
黑龍江綏化2021-2022學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第3頁
黑龍江綏化2021-2022學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第4頁
黑龍江綏化2021-2022學(xué)年高三最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、2021-2022高考數(shù)學(xué)模擬試卷注意事項:1 答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2選擇題必須使用2B鉛筆填涂;非選擇題必須使用05毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為( )ABC2D42設(shè)全集,集合,則

2、( )ABCD3空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離已知平面,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是( )AB3CD4設(shè)函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是( ).ABCD5已知雙曲線的一條漸近線為,圓與相切于點,若的面積為,則雙曲線的離心率為( )ABCD6若直線與曲線相切,則( )A3BC2D7根據(jù)黨中央關(guān)于“精準”脫貧的要求,我市某農(nóng)業(yè)經(jīng)濟部門派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家,則甲,乙兩位專家派遣至同一

3、縣區(qū)的概率為()ABCD8若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是( )ABCD9將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是( )ABCD10已知滿足,,則在上的投影為()ABCD211已知等差數(shù)列的前項和為,則( )A25B32C35D4012已知是等差數(shù)列的前項和,則( )A85BC35D二、填空題:本題共4小題,每小題5分,共20分。13若函數(shù)與函數(shù),在公共點處有共同的切線,則實數(shù)的值為_14圖(1)是第七屆國際數(shù)學(xué)教育大會(ICME-7)的會徽圖案,它是由一串直角三角形演

4、化而成的(如圖(2),其中,則的值是_.15在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_.16直線與拋物線交于兩點,若,則弦的中點到直線的距離等于_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)已知拋物線上一點到焦點的距離為2,(1)求的值與拋物線的方程;(2)拋物線上第一象限內(nèi)的動點在點右側(cè),拋物線上第四象限內(nèi)的動點,滿足,求直線的斜率范圍.18(12分)已知在四棱錐中,平面,在四邊形中,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.19(12分) 選修4 5:不等式選講 已知都是正實數(shù),且,求證: 20

5、(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,切點分別,直線與直線,分別交于,兩點,點,的縱坐標分別為,求的值.21(12分)已知曲線,直線:(為參數(shù)).(I)寫出曲線的參數(shù)方程,直線的普通方程;(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值22(10分)設(shè)函數(shù)f(x)=sin(2x-6)+sin(2x+3), xR.(I)求f(x)的最小正周期;(II)若(6,)且f(2)=12,求sin(2+6)的值.參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個

6、選項中,只有一項是符合題目要求的。1A【解析】由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個焦距為,由題意又,則,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質(zhì),屬于基礎(chǔ)題2A【解析】先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.3D【解析】建立平面直角坐標系,將問題轉(zhuǎn)化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內(nèi)的動點

7、,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值設(shè),則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關(guān)鍵是能夠準確求得動點軌跡方程,進而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.4B【解析】求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當時,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.5D【解析】由圓與相切可知,圓心到的距離為2,即.又,由此求出的值,利用離心率公式,求出e.【詳解】由題意得,.故選:

8、D.【點睛】本題考查了雙曲線的幾何性質(zhì),直線與圓相切的性質(zhì),離心率的求法,屬于中檔題.6A【解析】設(shè)切點為,對求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點為,由得,代入得,則,故選A.【點睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識點有導(dǎo)數(shù)的幾何意義,直線方程的點斜式,屬于簡單題目.7A【解析】每個縣區(qū)至少派一位專家,基本事件總數(shù),甲,乙兩位專家派遣至同一縣區(qū)包含的基本事件個數(shù),由此能求出甲,乙兩位專家派遣至同一縣區(qū)的概率.【詳解】派四位專家對三個縣區(qū)進行調(diào)研,每個縣區(qū)至少派一位專家基本事件總數(shù):甲,乙兩位專家派遣至同

9、一縣區(qū)包含的基本事件個數(shù):甲,乙兩位專家派遣至同一縣區(qū)的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8B【解析】求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令, 則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.9A【解析】根據(jù)y=Acos(x+)的圖象變換規(guī)律,求得g(x)的解析式,

10、根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得的取值范圍【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)的圖象,周期,若函數(shù)在上沒有零點, , ,解得,又,解得,當k=0時,解,當k=-1時,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(x+)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.10A【解析】根據(jù)向量投影的定義,即可求解.【詳解】在上的投影為.故選:A【點睛】本題考查向量的投影,屬于基礎(chǔ)題.11C【解析】設(shè)出等差數(shù)列的首項和公差,即可根據(jù)題意列出兩個方程,求出

11、通項公式,從而求得【詳解】設(shè)等差數(shù)列的首項為,公差為,則,解得,即有故選:C【點睛】本題主要考查等差數(shù)列的通項公式的求法和應(yīng)用,涉及等差數(shù)列的前項和公式的應(yīng)用,屬于容易題12B【解析】將已知條件轉(zhuǎn)化為的形式,求得,由此求得.【詳解】設(shè)公差為,則,所以,.故選:B【點睛】本小題主要考查等差數(shù)列通項公式的基本量計算,考查等差數(shù)列前項和的計算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13【解析】函數(shù)的定義域為,求出導(dǎo)函數(shù),利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,聯(lián)立解得的值【詳解】解:函數(shù)的定義域為,設(shè)曲線與曲線公共點為,由于在公共點處有共同的切線,解得,由,可得

12、聯(lián)立,解得故答案為:【點睛】本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,切線方程的求法,考查轉(zhuǎn)化思想以及計算能力,是中檔題14【解析】先求出向量和夾角的余弦值,再由公式即得.【詳解】如圖,過點作的平行線交于點,那么向量和夾角為,且是直角三角形,同理得,.故答案為:【點睛】本題主要考查平面向量數(shù)量積,解題關(guān)鍵是找到向量和的夾角.151【解析】由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值【詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題16【解析】

13、由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離【詳解】解:如圖,直線過定點,而拋物線的焦點為,弦的中點到準線的距離為,則弦的中點到直線的距離等于故答案為:【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(1)1;(2)【解析】(1)根據(jù)點到焦點的距離為2,利用拋物線的定義得,再根據(jù)點在拋物線上有,列方程組求解,(2)設(shè),根據(jù),再由,求得,當,即時,直線斜率不存在;當時,令,利用導(dǎo)數(shù)求解,【詳解】(1)因為點到焦點的距離為2,即點到準

14、線的距離為2,得,又,解得,所以拋物線方程為(2)設(shè),由由,則當,即時,直線斜率不存在;當時,令,所以在上分別遞減則【點睛】本題主要考查拋物線定義及方程的應(yīng)用,還考查了分類討論的思想和運算求解的能力,屬于中檔題,18(1)見解析;(2)【解析】(1)連接,證明,得到面,得到證明.(2)以,所在直線分別為,軸建立空間直角坐標系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,平面,面,面,又面,又在直角三角形中,為的中點,面,面,.(2)以,所在直線分別為,軸建立空間直角坐標系,設(shè)為平面的法向量,令,則,同理可得平面的一個法向量為.設(shè)向量與的所成的角為,由圖

15、形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計算能力和空間想象能力.19見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證試題解析:證明:,又,考點:柯西不等式20(1);(2).【解析】(1)因為點在橢圓上,所以,然后,利用,得出,進而求解即可(2)設(shè)點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,所以,所以(舍)或.故橢圓的標準方程為.(2)設(shè)點的坐標為,直線的方程為,直線的方程為.據(jù)得.據(jù)題意,得,得,同理,得,所以.

16、又可求,得,所以.【點睛】本題考查橢圓標準方程的求解以及聯(lián)立方程求定值的問題,聯(lián)立方程求定值的關(guān)鍵在于利用韋達定理進行消參,屬于中檔題21(I);(II)最大值為,最小值為.【解析】試題分析:(I)由橢圓的標準方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系過點作與垂直的直線,垂足為,則在中,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點,到定直線的最大值與最小值問題處理試題解析:(I)曲線C的參數(shù)方程為(為參數(shù))直線的普通方程為(II)曲線C上任意一點到的距離為則其中為銳角,且當時,取到最大值,最大值為當時,取到最小值,最小值為【考點定位】1、橢圓和直線的參數(shù)方程;2、點到直線的距離公式;3、解直角三角形22 (I);(II)-74【解析】(I)化簡得到fx=2sin2x+12,得到周期.(II) f(2)=2sin+12=12,故sin+1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論