Roots-and-Radical-Expressions7根和根的表達(dá)式課件_第1頁(yè)
Roots-and-Radical-Expressions7根和根的表達(dá)式課件_第2頁(yè)
Roots-and-Radical-Expressions7根和根的表達(dá)式課件_第3頁(yè)
Roots-and-Radical-Expressions7根和根的表達(dá)式課件_第4頁(yè)
Roots-and-Radical-Expressions7根和根的表達(dá)式課件_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、7. Roots and Radical ExpressionsIn this chapter, you will learn:What a polynomial isAdd/subtract/multiply/divide polynomialsSimplify radicals, exponentsSolving equations with exponents and radicalsComplex numbersConjugatesWhat is a monomial?An expression that is a number, that may or may not include

2、 a variable.MONOMIALSNOT MONOMIALSReal RootsReal roots are the possible solutions to a number, raised to a power. Vocabulary and PropertiesindexRadical signradicandHow to find the root (other than a square root), using a graphing calculator 1. Input the root you are going to take (for example, if yo

3、u are taking the third root of a number, start with the 3).2.Press MATH and select option 53. Enter the value you are taking the root of.Ex: 4 MATH 5 81 ENTER3Practice: Find each rootSolutions: 22, 7, and ERR: NONREAL ANS Lets take a closer look at this answerProperties and Notation:When n is an eve

4、n numberWhy? We want to make sure that the root is always positive when the index is an even numberNote: Absolute value symbols ensure that the root is positive when x is negative. They are not needed for y because y2 is never negative. Absolute value symbols must not be used here. If x is negative,

5、 then the radicand is negative and the root must also be negative. Notice that the index is an odd number here . . .Lets try someSimplify each expression. Use the absolute value symbols when needed. SolutionsSimplify each expression. Use the absolute value symbols when needed. Properties of Exponents lets review . . . NEGATIVE EXPONENTRULEPRODUCT OR POWERRULEHAVE TO HAVE THESAME BASEQUOTIENT OF POWERRULEHAVE TO HAVE THESAME BASEPOWER OF POWERRULE(x4)POWER OF PRODUCTRULE(2x4)POWER OF A QUOTIENTRULEPOWER OF QUOTIENT 2RULEFracti

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論