




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、IntroductionWelcomeMachine LearningSPAMMachine Learning Grew out of work in AI New capability for computers Examples: Database mining Large datasets from growth of automation/web. E.g., Web click data, medical records, biology, engineering Applications cant program by hand.E.g., Autonomous helicopte
2、r, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision. Machine Learning Grew out of work in AI New capability for computers Examples: Database mining Large datasets from growth of automation/web. E.g., Web click data, medical records, biology, engineering Application
3、s cant program by hand.E.g., Autonomous helicopter, handwriting recognition, most of Natural Language Processing (NLP), Computer Vision. Self-customizing programsE.g., Amazon, Netflix product recommendations Understanding human learning (brain, real AI).IntroductionWhat is machine learningMachine Le
4、arningArthur Samuel (1959). Machine Learning: Field of study that gives computers the ability to learn without being explicitly programmed. Tom Mitchell (1998) Well-posed Learning Problem: A computer program is said to learn from experience E with respect to some task T and some performance measure
5、P, if its performance on T, as measured by P, improves with experience E. Machine Learning definitionClassifying emails as spam or not spam. Watching you label emails as spam or not spam. The number (or fraction) of emails correctly classified as spam/not spam. None of the abovethis is not a machine
6、 learning problem.Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. What is the task T in this setting? “A computer program is said to learn from experience E with respect to some task T and some performance measure P,
7、if its performance on T, as measured by P, improves with experience E.”Machine learning algorithms:Supervised learningUnsupervised learningOthers: Reinforcement learning, recommender systems. Also talk about: Practical advice for applying learning algorithms. IntroductionSupervised LearningMachine L
8、earningHousing price prediction. Price ($) in 1000sSize in feet2 Regression: Predict continuous valued output (price)Supervised Learning“right answers” givenBreast cancer (malignant, benign)ClassificationDiscrete valued output (0 or 1)Malignant?1(Y)0(N)Tumor SizeTumor SizeTumor SizeAgeClump Thicknes
9、sUniformity of Cell SizeUniformity of Cell ShapeTreat both as classification problems. Treat problem 1 as a classification problem, problem 2 as a regression problem. Treat problem 1 as a regression problem, problem 2 as a classification problem. Treat both as regression problems. Youre running a co
10、mpany, and you want to develop learning algorithms to address each of two problems.Problem 1: You have a large inventory of identical items. You want to predict how many of these items will sell over the next 3 months.Problem 2: Youd like software to examine individual customer accounts, and for eac
11、h account decide if it has been hacked/compromised. Should you treat these as classification or as regression problems? IntroductionUnsupervised LearningMachine Learningx1x2Supervised LearningUnsupervised Learningx1x2Source: Su-In Lee, Dana Peer, Aimee Dudley, George Church, Daphne KollerGenesIndivi
12、dualsOrganize computing clustersSocial network analysisImage credit: NASA/JPL-Caltech/E. Churchwell (Univ. of Wisconsin, Madison) Astronomical data analysisMarket segmentationCocktail party problemMicrophone #1Microphone #2Speaker #1Speaker #2Audio clips courtesy of Te-Won Lee.Microphone #1:Micropho
13、ne #2: Microphone #1:Microphone #2: Output #1:Output #2: Output #1:Output #2: Cocktail party problem algorithmW,s,v = svd(repmat(sum(x.*x,1),size(x,1),1).*x)*x);Source: Sam Roweis, Yair Weiss & Eero SimoncelliOf the following examples, which would you address using an unsupervised learning algorithm? (Check all that apply.) Given a database of customer data, automatically discover market segments and group customers into different market segments. Given email labeled as spam/not spam, learn a spam filter.Given a set o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 面對變化的適應(yīng)與成長2024年高考作文試題及答案
- 幼兒園開展教研活動總結(jié)格式(8篇)
- 計算機(jī)倫理與法律問題試題及答案
- 變配電擴(kuò)容項(xiàng)目實(shí)施規(guī)劃
- 高考作文反映多樣性的試題與答案
- 工業(yè)互聯(lián)網(wǎng)平臺漏洞掃描技術(shù)在能源行業(yè)的應(yīng)用與發(fā)展研究報告
- 少走彎路的法學(xué)概論試題及答案
- 借給鄰居路協(xié)議書
- 共同賠償權(quán)協(xié)議書
- 軟件互換協(xié)議書
- 系統(tǒng)商用密碼應(yīng)用方案v5-2024(新模版)
- 安徽省2024年中考英語模擬試卷(含答案)4
- 2022年山東威海中考滿分作文《竟然如此簡單》
- 水利工程水閘泵站施工組織設(shè)計
- 第七屆江西省大學(xué)生金相技能大賽知識競賽單選題題庫附有答案
- 創(chuàng)新方法論智慧樹知到期末考試答案章節(jié)答案2024年西安理工大學(xué)
- JTS-215-2018碼頭結(jié)構(gòu)施工規(guī)范
- 山東省日照市東港區(qū)2023-2024學(xué)年八年級下學(xué)期期末數(shù)學(xué)試題
- 湖北省武漢市武昌區(qū)2023-2024學(xué)年八年級下學(xué)期期末數(shù)學(xué)試題
- 工程造價咨詢的協(xié)調(diào)配合及服務(wù)措施
- 2022-2023學(xué)年廣東省深圳市高二(下)期末數(shù)學(xué)試卷含答案
評論
0/150
提交評論