【新教材精創(chuàng)】8.6.3 平面與平面垂直(第2課時)平面與平面垂直的性質(zhì) 課件(2)-人教A版高中數(shù)學(xué)必修第二冊(共21張PPT)_第1頁
【新教材精創(chuàng)】8.6.3 平面與平面垂直(第2課時)平面與平面垂直的性質(zhì) 課件(2)-人教A版高中數(shù)學(xué)必修第二冊(共21張PPT)_第2頁
【新教材精創(chuàng)】8.6.3 平面與平面垂直(第2課時)平面與平面垂直的性質(zhì) 課件(2)-人教A版高中數(shù)學(xué)必修第二冊(共21張PPT)_第3頁
【新教材精創(chuàng)】8.6.3 平面與平面垂直(第2課時)平面與平面垂直的性質(zhì) 課件(2)-人教A版高中數(shù)學(xué)必修第二冊(共21張PPT)_第4頁
【新教材精創(chuàng)】8.6.3 平面與平面垂直(第2課時)平面與平面垂直的性質(zhì) 課件(2)-人教A版高中數(shù)學(xué)必修第二冊(共21張PPT)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、人教2019版必修第一冊第八章 立體幾何初步8.6.3 平面與平面垂直第2課時 平面與平面垂直的性質(zhì)課程目標(biāo)1理解平面和平面垂直的性質(zhì)定理并能運用其解決相關(guān)問題.2通過對性質(zhì)定理的理解和應(yīng)用,培養(yǎng)學(xué)生的空間轉(zhuǎn)化能力和邏輯推理能力數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理:探究歸納平面和平面垂直的性質(zhì)定理,線線垂直、線面垂直、面面垂直之間的轉(zhuǎn)化;2.直觀想象:題中幾何體的點、線、面的位置關(guān)系. 自主預(yù)習(xí),回答問題閱讀課本159-161頁,思考并完成以下問題1、如果兩個平面垂直,那么滿足什么條件時,一個平面內(nèi) 的直線與另一個平面垂直? 要求:學(xué)生獨立完成,以小組為單位,組內(nèi)可商量,最終選出代表回答問題。1.平面與平

2、面垂直的性質(zhì)定理al文字語言兩個平面垂直,則一個平面內(nèi) 的直線與另一個平面垂直符號語言a 圖形語言垂直于交線知識清單探究 (1)如果,則內(nèi)的直線必垂直于內(nèi)的無數(shù)條直線嗎?(2)如果,過內(nèi)的任意一點作與交線的垂線,則這條直線必垂直于嗎?答案 (1)正確.若設(shè)=l,a,b,bl,則ab,故內(nèi)與b平行的無數(shù)條直線均垂直于內(nèi)的任意直線.(2)錯誤.垂直于交線的直線必須在平面內(nèi)才與平面垂直,否則不垂直.1.如圖,在三棱錐P-ABC中,平面PAB平面ABC,平面PAC平面ABC,則下列結(jié)論中錯誤的是( ) A.APAC B.APAB C.AP平面ABC D.AP與BC所成的角為45小試牛刀2.在正方體AB

3、CD-A1B1C1D1中,直線l平面A1C1(l與棱不重合),則( ) A.B1Bl B.B1Bl C.B1B與l異面 D.B1B與l相交3.已知m,n是兩條不同的直線,是兩個不同的平面,且m,n,則下列敘述正確的是( )A.若,則mn B.若mn,則C.若n,則m D.若m,則4.如圖所示,在三棱柱ABC-A1B1C1中,BAC=90, BC1AC,則C1在平面ABC上的射影H必在直線上.答案 AB題型分析 舉一反三解題技巧(性質(zhì)定理應(yīng)用的注意事項)1.如圖,P是四邊形ABCD所在平面外一點,四邊形ABCD是DAB= 60,且邊長為a的菱形.側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD

4、.(1)若G為AD邊的中點,求證:BG平面PAD;(2)求證:ADPB.【跟蹤訓(xùn)練1】解析 (1)如圖所示,連接BD.因為四邊形ABCD是菱形,且DAB=60,所以ABD是正三角形,因為G是AD的中點,所以BGAD.又因為平面PAD平面ABCD,平面PAD平面ABCD=AD.所以BG平面PAD.(2)連接PG.因為PAD為正三角形,G為AD的中點,所以PGAD.由(1)知BGAD,而PGBG=G,PG平面PBG,BG平面PBG.所以AD平面PBG.又因為PB平面PBG,所以ADPB.例2 如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD= PC=4,AB=6,BC=3.(1)證

5、明:BC平面PDA;(2)證明:BCPD;解析 (1)證明:因為長方形ABCD中,BCAD,又BC平面PDA,AD平面PDA,所以BC平面PDA.(3)求點C到平面PDA的距離.(2)證明:取CD的中點H,連接PH,因為PD=PC,所以PHCD.又因為平面PDC平面ABCD,平面PDC平面ABCD=CD,所以PH平面ABCD.又因為BC平面ABCD,所以PHBC.又因為長方形ABCD中,BCCD,PHCD=H,所以BC平面PDC.又因為PD平面PDC,所以BCPD.解題技巧(空間垂直關(guān)系的注意事項)1、如圖,在矩形ABCD中,AB=2BC,P,Q分別為線段AB,CD的中點, EP平面ABCD.(1)求證:AQ平面CEP;(2)求證:平面AEQ平面DEP.【跟蹤訓(xùn)練2】證明:(1)在矩形ABCD中,因為AP=PB,DQ=QC,所以AP CQ.所以AQCP為平行四邊形.所以CPAQ.因為CP平面CEP,AQ平面CEP,所以AQ平面CEP.(2)因為EP平面ABCD,AQ平面ABCD,所以AQEP.因為AB

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論