




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、離散數(shù)學(xué)(Discrete Mathematics)課程代碼:2131032學(xué)分:3 學(xué)時:48 (其中:課程教學(xué)學(xué)時:48,實驗學(xué)時:0)先修課程:高等數(shù)學(xué),線性代數(shù)適用專業(yè):計算機科學(xué)與技術(shù)教材:離散數(shù)學(xué),馮偉森,欒新成,石兵編著,機械工業(yè)出版社,2011開課學(xué)院:計算機與軟件學(xué)院一、課程性質(zhì)與課程目標(biāo)(一)課程性質(zhì)離散數(shù)學(xué)是高等工科院校計算機類相關(guān)專業(yè)的一門重要學(xué)科基礎(chǔ)必修課,是學(xué)習(xí)后續(xù)計算機專業(yè)課程不可或缺的數(shù)學(xué)工具,包括數(shù)據(jù)結(jié)構(gòu)、數(shù)據(jù)庫系統(tǒng)、計算機網(wǎng)絡(luò)、算法設(shè)計和人工智能等課程。該課程結(jié)合計算機學(xué)科的特點,主要研究離散量的結(jié)構(gòu)及相互關(guān)系,是一門理論性較強、應(yīng)用性較廣的課程,也是培養(yǎng)學(xué)
2、生抽象思維能力和邏輯推理能力的核心課程。(二)課程目標(biāo)課程目標(biāo)包括知識目標(biāo)和能力目標(biāo),具體如下:課程目標(biāo)1:理解邏輯演算系統(tǒng)、集合論、圖論和代數(shù)系統(tǒng)的基本概念,掌握從基本概念出發(fā)的計算和證明方法,培養(yǎng)邏輯思維和邏輯推理能力。課程目標(biāo)2:掌握命題公式、集合運算、二元關(guān)系、函數(shù)、圖的最短路徑、代數(shù)系統(tǒng)特異元等離散結(jié)構(gòu)求解方法;通過嚴(yán)格數(shù)學(xué)證明的講授,使學(xué)生逐步習(xí)慣于以概念和公理為出發(fā)點的抽象思維方式,并初步掌握嚴(yán)謹數(shù)學(xué)論證的基本規(guī)范。課程目標(biāo)3:能夠利用邏輯演算、集合論、圖論和代數(shù)系統(tǒng)的基本概念和方法對計算機領(lǐng)域復(fù)雜工程問題進行抽象、分析、推理、求解和驗證。(三)課程目標(biāo)與專業(yè)畢業(yè)要求指標(biāo)點的對應(yīng)
3、關(guān)系本課程支撐專業(yè)培養(yǎng)計劃中的畢業(yè)要求指標(biāo)點1.1和2.1。畢業(yè)要求指標(biāo)點1.1:掌握數(shù)學(xué)與自然科學(xué)的基本概念、基本理論和基本技能,領(lǐng)會數(shù)學(xué)、物理思想方法,培養(yǎng)邏輯思維和邏輯推理能力。畢業(yè)要求指標(biāo)點2.1:應(yīng)用數(shù)學(xué)、自然科學(xué)和工程科學(xué)的基本原理,針對一個系統(tǒng)或者過程進行抽象、分析與識別,并進行問題推理、求解和驗證。課程目標(biāo)畢業(yè)要求指標(biāo)點課程目標(biāo)1課程目標(biāo)2課程目標(biāo)3畢業(yè)要求1.1畢業(yè)要求2.1二、課程內(nèi)容及教學(xué)要求(按章撰寫)本課程主要教學(xué)內(nèi)容包括:命題邏輯、集合論、圖論和代數(shù)系統(tǒng)等基本知識。數(shù)理邏輯部分主要講授命題與命題聯(lián)結(jié)詞、命題邏輯演算等。集合論部分主要介紹集合基本概念、集合的運算、函數(shù)
4、、關(guān)系及其運算、等價關(guān)系與集合劃分、偏序關(guān)系等。圖論部分主要講授無向圖、有向圖、通路、回路和圖的連通性、最短路徑、關(guān)鍵路徑以及兩種特殊圖(歐拉圖和哈密頓圖)。代數(shù)部分則主要介紹二元運算及其性質(zhì)、代數(shù)系統(tǒng)及其特異元、幾個典型的代數(shù)系統(tǒng)、以及代數(shù)系統(tǒng)間的同態(tài)與同構(gòu)關(guān)系。本課程基本要求是:理解各個聯(lián)結(jié)詞的定義和關(guān)系,能夠把命題公式轉(zhuǎn)化為等價的主析取范式或主合取范式,能夠把自然語言翻譯成數(shù)學(xué)語言,并給出推證過程;理解集合的基本概念和運算,理解關(guān)系及其性質(zhì),掌握幾個重要的關(guān)系以及偏序集特殊元素的求??;理解圖論的一些基本概念,掌握一些基本的圖論算法,包括最短路徑求解的Dijkstra算法等;理解代數(shù)系統(tǒng)的
5、基本概念,理解代數(shù)系統(tǒng)中特異元的基本概念并掌握這些元素的求解方法,理解代數(shù)系統(tǒng)之間的同態(tài)和同構(gòu)關(guān)系;針對常見的應(yīng)用問題,能應(yīng)用離散數(shù)學(xué)的基本原理進行抽象、分析、推理、求解和驗證。第1章命題邏輯教學(xué)內(nèi)容命題及其真值重言式范式聯(lián)結(jié)詞的擴充與歸約。推理規(guī)則和證明方法。(二)教學(xué)要求掌握命題、命題聯(lián)結(jié)詞的概念;理解命題公式的遞歸定義,熟練掌握命題符號化的方法,掌握命題公式真值表的求法;理解公式等值的定義,掌握運用基本等值式進行等值演算的方法。了解范式的概念,掌握求命題公式的析取范式、合取范式和主式的方法。了解與非、或非、異或等聯(lián)結(jié)詞及聯(lián)結(jié)詞的歸約。掌握常用的推理規(guī)則和證明方法。(三)重點與難點1. 重
6、點命題、命題聯(lián)結(jié)詞的概念;自然語言翻譯成數(shù)學(xué)語言;重言式與蘊含式;求命題公式的析取范式、合取范式和主式的方法;推理規(guī)則。2. 難點命題公式與翻譯;推理規(guī)則。第3章集合代數(shù)(一)教學(xué)內(nèi)容集合論的基本概念集合的運算集合的笛卡爾乘積(二)教學(xué)要求掌握子集、空集、全集、相等、密集等基本概念。理解集合的基本概念表示法;掌握集合的交、并、差和補等概念及交換律、結(jié)合律、分配律和De Morgan律等運算律,證明集合等式。掌握集合的笛卡爾乘積的運算。(三)重點與難點1.重點集合的概念與表示;集合的運算;序偶與笛卡爾積。2.難點序偶與笛卡爾積。第4章二元關(guān)系(一)教學(xué)內(nèi)容關(guān)系的基本概念關(guān)系的運算關(guān)系上的閉包運算
7、(二)教學(xué)要求理解關(guān)系及有關(guān)概念,掌握關(guān)系圖、關(guān)系矩陣及關(guān)系的特性(自反性、反自反性、對稱性、反對稱性和傳遞性)。掌握關(guān)系的合成、關(guān)系的冪關(guān)系、關(guān)系合成及其有關(guān)性質(zhì)。掌握逆關(guān)系、關(guān)系的閉包運算(自反閉包、對稱閉包和傳遞閉包)的性質(zhì)及求法。(三)重點與難點1.重點關(guān)系的概念;關(guān)系的性質(zhì);關(guān)系的閉包運算;復(fù)合關(guān)系與逆關(guān)系。2.難點關(guān)系的閉包運算;復(fù)合關(guān)系與逆關(guān)系。第5章特殊關(guān)系(一)教學(xué)內(nèi)容次序關(guān)系等價關(guān)系和劃分函數(shù)的基本概念特殊函數(shù)類逆函數(shù)(二)教學(xué)要求掌握偏序集合、擬序集合、線序集合、良序集合及特殊元素的概念及性質(zhì)。理解等價關(guān)系、覆蓋及劃分的概念,掌握求集合的等價類方法及劃分的積與和。(三)重
8、點與難點1.重點等價關(guān)系與等價類;序關(guān)系;特殊元素的概念和求法。2.難點等價關(guān)系與等價類;序關(guān)系。第6章函數(shù)(一)教學(xué)內(nèi)容函數(shù)的基本概念特殊函數(shù)類逆函數(shù)集合的基數(shù)、可數(shù)集和不可數(shù)集(二)教學(xué)要求理解函數(shù)的概念,掌握函數(shù)的合成運算。理解滿射、單射和雙射函數(shù)的概念,了解置換、特征函數(shù)的概念及運算。理解逆函數(shù)和規(guī)范映射的概念及性質(zhì)。掌握集合基數(shù)的概念會判斷一個集合是可數(shù)集還是不可數(shù)集(三)重點與難點1.重點滿射、單射和雙射函數(shù)的概念和判斷;逆函數(shù)與復(fù)合函數(shù);可數(shù)集和不可數(shù)集的判斷。2.難點可數(shù)集和不可數(shù)集的判斷。第8章基本計數(shù)方法(一)教學(xué)內(nèi)容1. 容斥原理2. 鴿巢原理(二)教學(xué)要求理解容斥原理和
9、鴿巢原理的原理。會應(yīng)用容斥原理和鴿巢原理去解決實際問題。(三)重點與難點1.重點容斥原理及其應(yīng)用;鴿巢原理及其應(yīng)用。2.難點應(yīng)用容斥原理和鴿巢原理解決實際問題。第10章圖的基本概念(一)教學(xué)內(nèi)容圖的基本概念路徑和回路圖的矩陣表示(二)教學(xué)要求理解圖的基本概念,了解幾類特殊的圖。理解路徑與回路及有關(guān)概念(基本路徑、簡單路徑、基本回路和簡單回路),了解連通圖的概念(強連通、單向連通、弱連通、強分圖、單向分圖和弱分圖)。掌握圖的矩陣表示(鄰接矩陣和可達性矩陣)。(三)重點與難點1.重點圖的基本概念;握手定理;連通性;圖的表示。2.難點應(yīng)用握手定理解決實際問題。第11章樹及其應(yīng)用(一)教學(xué)內(nèi)容無向樹及
10、其性質(zhì)生成樹(二)教學(xué)要求理解無向樹和生成樹的概念掌握用Kruskal算法求最小生成樹。(三)重點與難點1.重點樹的基本概念;生成樹的概念;Kruskal算法求最小生成樹。2.難點Kruskal算法求最小生成樹。第13章歐拉圖與哈密頓圖(一)教學(xué)內(nèi)容歐拉回路與歐拉圖哈密頓回路與哈密頓圖(二)教學(xué)要求掌握歐拉路徑、歐拉回路和歐拉圖的判別法。理解哈密爾頓路徑、哈密爾頓回路和哈密爾頓圖的概念,掌握哈密頓圖的判定。(三)重點與難點1.重點歐拉圖的概念和判定;哈密頓圖的概念和判定。2.難點哈密頓圖的判定。第14章代數(shù)系統(tǒng)教學(xué)內(nèi)容二元運算及其性質(zhì)代數(shù)系統(tǒng)及其特異元廣群、半群和群(二)教學(xué)要求理解二元運算的
11、定義,熟練掌握二元運算性質(zhì)的判斷及證明。理解代數(shù)系統(tǒng)的基本概念。理解代數(shù)系統(tǒng)中特異元(單位元、逆元)的基本概念,掌握這些元素的求解方法。理解代數(shù)系統(tǒng)廣群、半群、群、環(huán)和域的基本概念,掌握特殊代數(shù)系統(tǒng)的判定方法。(三)重點與難點1.重點二元運算及其性質(zhì)的判斷及證明;代數(shù)系統(tǒng)的特異元;特殊代數(shù)系統(tǒng)的判斷與證明。2.難點二元運算性質(zhì)的判斷及證明;代數(shù)系統(tǒng)的特異元求??;特殊代數(shù)系統(tǒng)的判斷與證明。第15章半群與群教學(xué)內(nèi)容子群和正規(guī)子群群的同態(tài)與同構(gòu)(二)教學(xué)要求了解子群、子群的陪集以及正規(guī)子群的概念。掌握群的同態(tài)和同構(gòu)定義,會證明。(三)重點與難點1.重點群的同態(tài)和同構(gòu)的證明。2.難點群的同態(tài)和同構(gòu)的證
12、明。第16章環(huán)與域教學(xué)內(nèi)容環(huán)和域(二)教學(xué)要求掌握環(huán)和域的定義,判斷與證明。(三)重點與難點1.重點環(huán)和域的判斷與證明。2.難點環(huán)和域的判斷與證明。三、學(xué)時分配及教學(xué)方法章教學(xué)形式及學(xué)時分配主要教學(xué)方法支撐的課程目標(biāo)課堂教學(xué)實驗上機課程實踐小計第1章命題邏輯1010講授、案例、演示、討論課程目標(biāo)1, 2,3第3章集合代數(shù)22講授、案例、自學(xué)課程目標(biāo)1, 2第4章二元關(guān)系33講授、案例、對比、討論課程目標(biāo)1, 2, 3第5章特殊關(guān)系33講授、案例、對比、討論課程目標(biāo)1, 2, 3第6章函數(shù)44講授、案例、討論課程目標(biāo)1, 2, 3第8章基本計數(shù)方法22講授、案例、討論課程目標(biāo)1, 2, 3第10
13、章圖的基本概念44講授、案例、演示、討論課程目標(biāo)1, 2第11章樹及其應(yīng)用33講授、案例、演示、討論課程目標(biāo)1, 2第13章歐拉圖與哈密頓圖33講授、案例、研究型、討論課程目標(biāo)1, 2, 3第14章代數(shù)系統(tǒng)22講授、案例、研究型、討論課程目標(biāo)1, 2, 3第15章半群與群44講授、案例、研究型、討論課程目標(biāo)1, 2, 3第16章環(huán)與域22講授、案例、研究型、討論課程目標(biāo)1, 2, 3習(xí)題課66講授、討論課程目標(biāo)1, 2, 3合計4848注:1.課程實踐學(xué)時按相關(guān)專業(yè)培養(yǎng)計劃列入表格; 2.主要教學(xué)方法包括講授法、討論法、演示法、研究型教學(xué)方法(基于問題、項目、案例等教學(xué)方法)等。四、課程考核
14、1. 課程考核方式包括期末考試、平時表現(xiàn)考核??己诵问娇己艘罂己藱?quán)重備注平時作業(yè)及期中考試課后完成2025個習(xí)題,主要考核學(xué)生對每節(jié)課知識點的復(fù)習(xí)、理解和掌握度,計算全部作業(yè)的平均成績再按30%計入總成績;可讓學(xué)生查閱資料,了解本課程相關(guān)技術(shù)發(fā)展情況,自主學(xué)習(xí)并完成。30%根據(jù)平時作業(yè)得分取平均值或結(jié)合期中測試和考勤情況期末考試試卷題型包括選擇題、填空題、判斷題、計算題、應(yīng)用題和證明題等,以卷面成績的70%計入課程總成績。70%期末考試采用閉卷筆試。五、參考書目及學(xué)習(xí)資料左孝凌等編,離散數(shù)學(xué)(第一版),上??茖W(xué)技術(shù)文獻出版社,1982。段禪倫、魏仕民編著,離散數(shù)學(xué)(第一版),北京大學(xué)出版社,2006。耿素云、屈婉
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西安郵電大學(xué)《雅思英語閱讀與寫作(上)》2023-2024學(xué)年第二學(xué)期期末試卷
- 神木職業(yè)技術(shù)學(xué)院《雕塑基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 江陽城建職業(yè)學(xué)院《數(shù)字設(shè)備與裝備》2023-2024學(xué)年第一學(xué)期期末試卷
- 山東省萊州市一中2024-2025學(xué)年高三數(shù)學(xué)試題第四次聯(lián)考試題含解析
- 遼寧傳媒學(xué)院《地質(zhì)工程》2023-2024學(xué)年第二學(xué)期期末試卷
- 泉州幼兒師范高等??茖W(xué)?!督鹑诠こ獭?023-2024學(xué)年第二學(xué)期期末試卷
- 神木職業(yè)技術(shù)學(xué)院《生態(tài)環(huán)境保護基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 因狗咬傷賠償協(xié)議書模板.二零二五年
- 二零二五版成都存量房屋買賣合同書
- 二零二五版論行政合同書特權(quán)的法律規(guī)制
- 第十六周《“粽”享多彩端午深耕文化傳承》主題班會
- 林業(yè)行政執(zhí)法培訓(xùn)課件
- 第15課 鋼鐵長城 課件(31張)2024-2025學(xué)年部編版歷史八年級下冊
- 食品加工行業(yè)的風(fēng)險管理與應(yīng)急措施
- 創(chuàng)意美術(shù)網(wǎng)絡(luò)安全課件
- 社區(qū)衛(wèi)生服務(wù)中心各科室工作規(guī)章制度及人員崗位職責(zé)
- 市政工程設(shè)備管理實習(xí)報告范文
- 2025年中國低空飛行器檢測行業(yè)市場動態(tài)分析、發(fā)展方向及投資前景分析報告
- 起搏器植入術(shù)后突發(fā)肺栓塞病例
- 上海電信2025年度智慧城市合作協(xié)議2篇
- 2025年交通控股集團招聘筆試參考題庫含答案解析
評論
0/150
提交評論