版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、Local Search:walksat, ant colonies, and genetic algorithmsTonightCourse evaluationsLocal searchFinal examIssueHow to search really large spaces1030,000 + statessystematic search hopeless!Local searchiterative repair, hill climbing, gradient descent, guess a start staterepeat until satisfied: make sm
2、all changemove to a local neighborExamplesLearning weights in a neural networkSpace: set of weightsNeighborhood: small deltaLearning CPTs in a Bayesian networkEM algorithmThese are optimization problems what about local search for decision problems?N-QueensN-Queens DemoGSATGuess a random truth assig
3、nmentwhile (#unsat clauses 0)flip a variable that minimizes number of unsatisfied clausesRoom for improvementLess dramatic performance on structured problems (e.g. planning)Too greedy can become stuck in local minimaSolution: allow some “uphill” moves many different strategies possibleSimulated anne
4、alingTabu listsAlternate GSAT + random flipsRandom WalkGuess a random truth assignmentwhile (#unsat clauses 0)pick an unsat clauseflip any variable in the clause Suppose clauses are of length 2; what is probably a flip is “correct”?Solves 2-SAT in O(n2) time!Greediness + RandomnessIf clause length 2
5、, then pure random walk is very unlikely to convergeSuppose we random walk greedily?WalksatGuess a random truth assignmentwhile (#unsat clauses 0)pick an unsat clausewith probability p flip a variable that minimizes number of newly-unsatisfied clauses otherwise flip any variable in clause Walksat re
6、sultsBest known method for many problemsgraph coloring(certain) planning problemshard random problemsFor many (all?) other domains, can mix random walk & backtrack searchrun backtrack DPLL until time outrestart with new random seed for choosing branching variablesStochastic Backtrack SearchQuasigrou
7、p Completion DemoParallel local searchTechniques considered so far only look at one point on the search space at a timeEasy to run many copies in parallel with different random seedsCalled portfolio approachOften gives super-linear speedup!Run time distributionsOften there is a great variability in
8、run time depending on random seedsAs parallel processes are added, probability of getting a “l(fā)ucky” short run can increase quickly!Informed parallel searchCan we further improve performance by exchanging information between the parallel processes?Genetic algorithmsAnt colony algorithmsGenetic algori
9、thmsIdea: the genetic code of an individual is a point in the search spacea gene = a dimension in the search spaceReproduction = local movesAsexual reproduction (mutation) = create a child by a small change in the parentSexual reproduction = create a child by mixing genes of two parentsThe GA Cycle
10、of Reproductionreproductionpopulationevaluationmodificationdiscarddeleted membersparentschildrenmodifiedchildrenevaluated childrenA Simple ExampleThe Traveling Salesman Problem:Find a tour of a given set of cities so that each city is visited only oncethe total distance traveled is minimizedRepresen
11、tationRepresentation is an ordered list of citynumbers known as an order-based GA.1) London 3) Dunedin 5) Beijing 7) Tokyo2) Venice 4) Singapore 6) Phoenix 8) VictoriaCityList1 (3 5 7 2 1 6 4 8)CityList2 (2 5 7 6 8 1 3 4)CrossoverCrossover combines inversion andrecombination: * *Parent1 (3 5 7 2 1 6
12、 4 8)Parent2 (2 5 7 6 8 1 3 4)Child (5 8 7 2 1 6 3 4)This operator is called the Order1 crossover.Mutation involves reordering of the list: * *Before: (5 8 7 2 1 6 3 4)After: (5 8 6 2 1 7 3 4)MutationTSP GA Demo TSP Example: 30 CitiesSolution i (Distance = 941)Solution j(Distance = 800)Solution k(Di
13、stance = 652)Best Solution (Distance = 420)Overview of PerformancePractical ApplicationsDesign of small sorting circuitsOptimization of code fragmentsUsed in Windows kernel?Training neural networksCan outperform backpropAirport scheduling(Generally) unanswered questions:Would other local search tech
14、niques work just as well?Is crossover really key?Ant colony optimizationIdea: Each ant in a colony is local search processAnts (processes) communicate by laying down phenoromes at visited states (“this place looked good to me”)When deciding where to move, ants prefer (with some probability) to follo
15、w trail left by other antsPhenorome eventually “evaporates”Real antsWhy might it work?More “intelligent” noiseAnt B t10Ant A t3gradientgradientnot gradient, but a good alternativeBeyond phenomeronesCombine local gradients to get more global viewAnt B t10Ant A t10gradientgradientmove by weighted sum
16、of Bs own gradient and As gradientDoes it work?Many successful applications in engineering & scienceAppears to outperform single-thread local search procedures for quadratic programmingMore work needed to determine exactly why metaphor works when it does!SummaryLocal search is an important tool for
17、large, complex optimization and decision problemsIdeas: Iterative repairNoise to escape local optimaMuch work on parallel local searchPortfoliosGenetic algorithmsAnt colony optimizationSo.End of the course.Is that all there is?Where was the artificial intelligence?! In my viewAI is the study of gene
18、ral problem-solving strategies“Meta” algorithms 101Life: one damned problem after anotherStrategies evolve at many levelsGenetic “real” evolutionIndividual human logical thinkingSociety spread of innovation UnityA relatively small number of conceptsvarious state-space search strategiessyntactic structure (both formal logic & natural language)learning strategies minimizing entropy, error, complexityarise over and over again in
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度電子煙具噴漆定制合同
- 2025年度苗木種植基地綠色認(rèn)證合作合同4篇
- 2025年版城市綠地門衛(wèi)及環(huán)境安全維護(hù)合同4篇
- 2025年個人住宅防水工程驗收合同范本2篇
- 二零二五年度棉被產(chǎn)品展示與體驗店合作經(jīng)營合同4篇
- 2025年度個人二手房買賣合同售后服務(wù)與糾紛調(diào)解協(xié)議
- 2025年度個人旅游保險合同范本6篇
- 2025年度民間汽車質(zhì)押借款電子支付合同范本3篇
- 2025年度豪華品牌個人二手車買賣合同范本2篇
- 2025年度擬上公司與會計事務(wù)所財務(wù)信息處理保密合同4篇
- 危險品倉儲危險廢物處置與管理考核試卷
- 2024版汽車融資擔(dān)保合同范本版B版
- 浙江寧波鎮(zhèn)海區(qū)2025屆中考生物對點突破模擬試卷含解析
- 工業(yè)自動化設(shè)備維護(hù)保養(yǎng)方案
- 《中醫(yī)心理學(xué)》課件
- 心肌梗死病人護(hù)理課件
- 宮頸癌中醫(yī)護(hù)理查房
- 2023年安徽省公務(wù)員錄用考試《行測》真題及答案解析
- 《阻燃材料與技術(shù)》課件 顏龍 第3、4講 阻燃基本理論、阻燃劑性能與應(yīng)用
- 輪狀病毒護(hù)理課件
- 地測防治水技能競賽理論考試題庫(含答案)
評論
0/150
提交評論