黑龍江哈爾濱市2023學(xué)年高三第三次模擬考試數(shù)學(xué)試卷(含解析)_第1頁
黑龍江哈爾濱市2023學(xué)年高三第三次模擬考試數(shù)學(xué)試卷(含解析)_第2頁
黑龍江哈爾濱市2023學(xué)年高三第三次模擬考試數(shù)學(xué)試卷(含解析)_第3頁
黑龍江哈爾濱市2023學(xué)年高三第三次模擬考試數(shù)學(xué)試卷(含解析)_第4頁
黑龍江哈爾濱市2023學(xué)年高三第三次模擬考試數(shù)學(xué)試卷(含解析)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、2023學(xué)年高考數(shù)學(xué)模擬測試卷請考生注意:1請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用05毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2答題前,認(rèn)真閱讀答題紙上的注意事項(xiàng),按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1已知為等差數(shù)列,若,則( )A1B2C3D62圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是( )ABCD3做拋擲一枚骰子的試驗(yàn),當(dāng)出現(xiàn)1點(diǎn)或2點(diǎn)時(shí),就說這次試驗(yàn)成功,假設(shè)骰子是質(zhì)地均勻的.則在3次這樣的試驗(yàn)

2、中成功次數(shù)X的期望為( )A13B14集合中含有的元素個(gè)數(shù)為( )A4B6C8D125設(shè),點(diǎn),設(shè)對一切都有不等式 成立,則正整數(shù)的最小值為( )ABCD6若,則的虛部是A3BCD7已知,為圓上的動(dòng)點(diǎn),過點(diǎn)作與垂直的直線交直線于點(diǎn),若點(diǎn)的橫坐標(biāo)為,則的取值范圍是( )ABCD8若實(shí)數(shù)滿足的約束條件,則的取值范圍是( )ABCD9地球上的風(fēng)能取之不盡,用之不竭.風(fēng)能是淸潔能源,也是可再生能源.世界各國致力于發(fā)展風(fēng)力發(fā)電,近10年來,全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量連年攀升,中國更是發(fā)展迅猛,2014年累計(jì)裝機(jī)容量就突破了,達(dá)到,中國的風(fēng)力發(fā)電技術(shù)也日臻成熟,在全球范圍的能源升級(jí)換代行動(dòng)中體現(xiàn)出大國的擔(dān)當(dāng)與

3、決心.以下是近10年全球風(fēng)力發(fā)電累計(jì)裝機(jī)容量與中國新增裝機(jī)容量圖. 根據(jù)所給信息,正確的統(tǒng)計(jì)結(jié)論是( )A截止到2015年中國累計(jì)裝機(jī)容量達(dá)到峰值B10年來全球新增裝機(jī)容量連年攀升C10年來中國新增裝機(jī)容量平均超過D截止到2015年中國累計(jì)裝機(jī)容量在全球累計(jì)裝機(jī)容量中占比超過10若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為( )A8B4CD611若復(fù)數(shù)是純虛數(shù),則( )A3B5CD12若集合,則下列結(jié)論正確的是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13已知一組數(shù)據(jù)1.6,1.8,2,2.2,2.4,則該組數(shù)據(jù)的方差是_14數(shù)列滿足,則,_.若存在nN*使得成立,則實(shí)數(shù)的

4、最小值為_15已知,求_.16若,則_.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)某地為改善旅游環(huán)境進(jìn)行景點(diǎn)改造如圖,將兩條平行觀光道l1和l2通過一段拋物線形狀的棧道AB連通(道路不計(jì)寬度),l1和l2所在直線的距離為0.5(百米),對岸堤岸線l3平行于觀光道且與l2相距1.5(百米)(其中A為拋物線的頂點(diǎn),拋物線的對稱軸垂直于l3,且交l3于M),在堤岸線l3上的E,F(xiàn)兩處建造建筑物,其中E,F(xiàn)到M的距離為1(百米),且F恰在B的正對岸(即BFl3)(1)在圖中建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并求棧道AB的方程;(2)游客(視為點(diǎn)P)在棧道AB的何處時(shí),觀測EF

5、的視角(EPF)最大?請?jiān)冢?)的坐標(biāo)系中,寫出觀測點(diǎn)P的坐標(biāo)18(12分)如圖,在三棱錐中,平面平面,.點(diǎn),分別為線段,的中點(diǎn),點(diǎn)是線段的中點(diǎn).(1)求證:平面.(2)判斷與平面的位置關(guān)系,并證明.19(12分)在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為 (為參數(shù)),直線與曲線分別交于兩點(diǎn)(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;(2)若點(diǎn)的極坐標(biāo)為,求的值20(12分)設(shè)函數(shù),().(1)若曲線在點(diǎn)處的切線方程為,求實(shí)數(shù)a、m的值;(2)若對任意恒成立,求實(shí)數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個(gè)不同的實(shí)根?證明你的結(jié)論.21

6、(12分)正項(xiàng)數(shù)列的前n項(xiàng)和Sn滿足: (1)求數(shù)列的通項(xiàng)公式; (2)令,數(shù)列bn的前n項(xiàng)和為Tn,證明:對于任意的nN*,都有Tn .22(10分)已知函數(shù).(1)解關(guān)于的不等式;(2)若函數(shù)的圖象恒在直線的上方,求實(shí)數(shù)的取值范圍2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【答案解析】利用等差數(shù)列的通項(xiàng)公式列出方程組,求出首項(xiàng)和公差,由此能求出【題目詳解】an為等差數(shù)列,,,解得10,d3,+4d10+111故選:B【答案點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知

7、識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題2、C【答案解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題3、C【答案解析】每一次成功的概率為p=26=【題目詳解】每一次成功的概率為p=26=13故選:C.【答案點(diǎn)睛】本題考查了二項(xiàng)分布求數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.4、B【答案解析】解:因?yàn)榧现?/p>

8、的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B5、A【答案解析】先求得,再求得左邊的范圍,只需,利用單調(diào)性解得t的范圍.【題目詳解】由題意知sin,隨n的增大而增大,,,即,又f(t)=在t上單增,f(2)= -10,正整數(shù)的最小值為3.【答案點(diǎn)睛】本題考查了數(shù)列的通項(xiàng)及求和問題,考查了數(shù)列的單調(diào)性及不等式的解法,考查了轉(zhuǎn)化思想,屬于中檔題.6、B【答案解析】因?yàn)?,所以的虛部?故選B7、A【答案解析】由題意得,即可得點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),的雙曲線,根據(jù)雙曲線的性質(zhì)即可得解.【題目詳解】如圖,連接OP,AM,由題意得,點(diǎn)M的軌跡為以A,B為左、右焦點(diǎn),

9、的雙曲線,.故選:A.【答案點(diǎn)睛】本題考查了雙曲線定義的應(yīng)用,考查了轉(zhuǎn)化化歸思想,屬于中檔題.8、B【答案解析】根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【題目詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時(shí)截距最小,;當(dāng)經(jīng)過時(shí),截距最大值,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【答案點(diǎn)睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.9、D【答案解析】先列表分析近10年全球風(fēng)力發(fā)電新增裝機(jī)容量,再結(jié)合數(shù)據(jù)研究單調(diào)性、平均值以及占比,即可作出選擇.【題目詳解】

10、年份2009201020112012201320142015201620172018累計(jì)裝機(jī)容量158.1197.2237.8282.9318.7370.5434.3489.2542.7594.1新增裝機(jī)容量39.140.645.135.851.863.854.953.551.4中國累計(jì)裝機(jī)裝機(jī)容量逐年遞增,A錯(cuò)誤;全球新增裝機(jī)容量在2015年之后呈現(xiàn)下降趨勢,B錯(cuò)誤;經(jīng)計(jì)算,10年來中國新增裝機(jī)容量平均每年為,選項(xiàng)C錯(cuò)誤;截止到2015年中國累計(jì)裝機(jī)容量,全球累計(jì)裝機(jī)容量,占比為,選項(xiàng)D正確.故選:D【答案點(diǎn)睛】本題考查條形圖,考查基本分析求解能力,屬基礎(chǔ)題.10、A【答案解析】作出可行域,

11、由,可得.當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,可得.再由基本不等式可求的最小值.【題目詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點(diǎn)時(shí),最大,即最大,最大值為2.解方程組,得.,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.的最小值為8.故選:.【答案點(diǎn)睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.11、C【答案解析】先由已知,求出,進(jìn)一步可得,再利用復(fù)數(shù)模的運(yùn)算即可【題目詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.【答案點(diǎn)睛】本題考查復(fù)數(shù)的除法、復(fù)數(shù)模的運(yùn)算,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.12、D【答案解析】由題意,分析即得解【題目詳解】由題意,故,故選:D【答案點(diǎn)睛】本題考

12、查了元素和集合,集合和集合之間的關(guān)系,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、0.08【答案解析】先求解這組數(shù)據(jù)的平均數(shù),然后利用方差的公式可得結(jié)果.【題目詳解】首先求得,故答案為:0.08.【答案點(diǎn)睛】本題主要考查數(shù)據(jù)的方差,明確方差的計(jì)算公式是求解的關(guān)鍵,側(cè)重考查數(shù)據(jù)分析的核心素養(yǎng).14、 【答案解析】利用“退一作差法”求得數(shù)列的通項(xiàng)公式,將不等式分離常數(shù),利用商比較法求得的最小值,由此求得的取值范圍,進(jìn)而求得的最小值.【題目詳解】當(dāng)時(shí)兩式相減得所以當(dāng)時(shí),滿足上式綜上所述存在使得成立的充要條件為存在使得,設(shè),所以,即,所以單調(diào)遞增

13、,的最小項(xiàng),即有的最小值為.故答案為:(1). (2). 【答案點(diǎn)睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列的通項(xiàng)公式,考查數(shù)列單調(diào)性的判斷方法,考查不等式成立的存在性問題的求解策略,屬于中檔題.15、【答案解析】求出向量的坐標(biāo),然后利用向量數(shù)量積的坐標(biāo)運(yùn)算可計(jì)算出結(jié)果.【題目詳解】,因此,.故答案為:.【答案點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于基礎(chǔ)題.16、【答案解析】因?yàn)椋?因?yàn)?,所以,又,所以,所?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析,x0,1;(2)P(,)時(shí),視角EPF最大【答案解析】(1)以A為原點(diǎn),l1為x軸,拋

14、物線的對稱軸為y軸建系,設(shè)出方程,通過點(diǎn)的坐標(biāo)可求方程;(2)設(shè)出的坐標(biāo),表示出,利用基本不等式求解的最大值,從而可得觀測點(diǎn)P的坐標(biāo)【題目詳解】(1)以A為原點(diǎn),l1為x軸,拋物線的對稱軸為y軸建系由題意知:B(1,0.5),設(shè)拋物線方程為代入點(diǎn)B得:p1,故方程為,x0,1;(2)設(shè)P(,),t0,作PQl3于Q,記EPQ,F(xiàn)PQ,令,則:,當(dāng)且僅當(dāng)即,即,即時(shí)取等號(hào);故P(,)時(shí)視角EPF最大,答:P(,)時(shí),視角EPF最大【答案點(diǎn)睛】本題主要考查圓錐曲線的實(shí)際應(yīng)用,理解題意,構(gòu)建合適的模型是求解的關(guān)鍵,涉及最值問題一般利用基本不等式或者導(dǎo)數(shù)來進(jìn)行求解,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18、(

15、1)見解析(2)平面.見解析【答案解析】(1)要證平面,只需證明,即可求得答案;(2)連接交于點(diǎn),連接,根據(jù)已知條件求證,即可判斷與平面的位置關(guān)系,進(jìn)而求得答案.【題目詳解】(1),為邊的中點(diǎn),平面平面,平面平面,平面,平面,在內(nèi),為所在邊的中點(diǎn),又,平面.(2)判斷可知,平面,證明如下:連接交于點(diǎn),連接.、分別為邊、的中點(diǎn),.又是的重心,平面,平面,平面.【答案點(diǎn)睛】本題主要考查了求證線面垂直和線面平行,解題關(guān)鍵是掌握線面垂直判定定理和線面平行判斷定理,考查了分析能力和空間想象能力,屬于中檔題.19、 (1) 曲線的直角坐標(biāo)方程為即,直線的普通方程為;(2).【答案解析】(1)利用代入法消去

16、參數(shù)方程中的參數(shù),可得直線的普通方程,極坐標(biāo)方程兩邊同乘以利用 即可得曲線的直角坐標(biāo)方程;(2)直線的參數(shù)方程代入圓的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程的幾何意義,利用韋達(dá)定理可得結(jié)果.【題目詳解】(1)由,得,所以曲線的直角坐標(biāo)方程為,即, 直線的普通方程為. (2)將直線的參數(shù)方程代入并化簡、整理,得. 因?yàn)橹本€與曲線交于,兩點(diǎn)所以,解得.由根與系數(shù)的關(guān)系,得,. 因?yàn)辄c(diǎn)的直角坐標(biāo)為,在直線上.所以, 解得,此時(shí)滿足.且,故.【答案點(diǎn)睛】參數(shù)方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數(shù)化為普通方程,通過選取相應(yīng)的參數(shù)可以把普通方程化為參數(shù)方程,利用關(guān)系式,等可以把極坐標(biāo)方程與直角

17、坐標(biāo)方程互化,這類問題一般我們可以先把曲線方程化為直角坐標(biāo)方程,用直角坐標(biāo)方程解決相應(yīng)問題20、(1),;(2);(3)不能,證明見解析【答案解析】(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價(jià)于對任意恒成立,即時(shí),利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點(diǎn)存在性定理證明即可.【題目詳解】(1),曲線在點(diǎn)處的切線方程為,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時(shí),解得,當(dāng)時(shí),對任意,即在單調(diào)遞增,此時(shí),實(shí)數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個(gè)不同的實(shí)根,以下給出證明:記,則關(guān)于的方程有三個(gè)不同的實(shí)根,等價(jià)于函數(shù)有三個(gè)零點(diǎn),當(dāng)時(shí),記,則,在單調(diào)遞增,即,在單調(diào)遞增,至多有一個(gè)零點(diǎn);當(dāng)時(shí),記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個(gè)零點(diǎn),則至多有兩個(gè)單調(diào)區(qū)間,至多有兩個(gè)零點(diǎn).因此,不可能有三個(gè)零點(diǎn).關(guān)于的方程不可能有三個(gè)不同的實(shí)根.【答案點(diǎn)睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點(diǎn)存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.21、(1)(2)見解析【答案解析】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論