下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021年黑龍江省綏化市某學(xué)校數(shù)學(xué)高職單招模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.A.
B.
C.
2.已知拋物線方程為y2=8x,則它的焦點(diǎn)到準(zhǔn)線的距離是()A.8B.4C.2D.6
3.A.(0,4)
B.C.(-2,2)
D.
4.某品牌的電腦光驅(qū),使用事件在12000h以上損壞的概率是0.2,則三個(gè)里最多有一個(gè)損壞的概率是()A.0.74B.0.096C.0.008D.0.512
5.袋中裝有4個(gè)大小形狀相同的球,其中黑球2個(gè),白球2個(gè),從袋中隨機(jī)抽取2個(gè)球,至少有一個(gè)白球的概率為()A.
B.
C.
D.
6.若輸入-5,按圖中所示程序框圖運(yùn)行后,輸出的結(jié)果是()A.-5B.0C.-1D.1
7.設(shè)a>b,c>d則()A.ac>bdB.a+c>b+cC.a+d>b+cD.ad>be
8.函數(shù)和在同一直角坐標(biāo)系內(nèi)的圖像可以是()A.
B.
C.
D.
9.函數(shù)y=Asin(wx+α)的部分圖象如圖所示,則()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
10.已知a=(4,-4),點(diǎn)A(1,-1),B(2,-2),那么()A.a=ABB.a⊥ABC.|a|=|AB|D.a//AB
二、填空題(10題)11.
12.已知數(shù)列{an}是各項(xiàng)都是正數(shù)的等比數(shù)列,其中a2=2,a4=8,則數(shù)列{an}的前n項(xiàng)和Sn=______.
13.
14.某校有高中生1000人,其中高一年級(jí)400人,高二年級(jí)300人,高三年級(jí)300人,現(xiàn)釆取分層抽樣的方法抽取一個(gè)容量為40的樣本,則高三年級(jí)應(yīng)抽取的人數(shù)是_____人.
15.Ig0.01+log216=______.
16.
17.
18.某校有老師200名,男學(xué)生1200名,女學(xué)生1000名,現(xiàn)用分層抽樣的方法從所有師生中抽取一個(gè)容量為240的樣本,則從女生中抽取的人數(shù)為______.
19.
20.以點(diǎn)(1,2)為圓心,2為半徑的圓的方程為_______.
三、計(jì)算題(5題)21.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。
22.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
23.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
24.某小組有6名男生與4名女生,任選3個(gè)人去參觀某展覽,求(1)3個(gè)人都是男生的概率;(2)至少有兩個(gè)男生的概率.
25.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
四、證明題(5題)26.若x∈(0,1),求證:log3X3<log3X<X3.
27.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點(diǎn)E為PB的中點(diǎn).求證:PD//平面ACE.
28.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
29.己知sin(θ+α)=sin(θ+β),求證:
30.
五、簡(jiǎn)答題(5題)31.已知集合求x,y的值
32.以點(diǎn)(0,3)為頂點(diǎn),以y軸為對(duì)稱軸的拋物線的準(zhǔn)線與雙曲線3x2-y2+12=0的一條準(zhǔn)線重合,求拋物線的方程。
33.已知雙曲線C:的右焦點(diǎn)為,且點(diǎn)到C的一條漸近線的距離為.(1)求雙曲線C的標(biāo)準(zhǔn)方程;(2)設(shè)P為雙曲線C上一點(diǎn),若|PF1|=,求點(diǎn)P到C的左焦點(diǎn)的距離.
34.數(shù)列的前n項(xiàng)和Sn,且求(1)a2,a3,a4的值及數(shù)列的通項(xiàng)公式(2)a2+a4+a6++a2n的值
35.設(shè)函數(shù)是奇函數(shù)(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)當(dāng)x<0時(shí),判斷f(x)的單調(diào)性并加以證明.
六、綜合題(5題)36.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
37.己知橢圓與拋物線y2=4x有共同的焦點(diǎn)F2,過橢圓的左焦點(diǎn)F1作傾斜角為的直線,與橢圓相交于M、N兩點(diǎn).求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
38.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
39.
40.己知點(diǎn)A(0,2),5(-2,-2).(1)求過A,B兩點(diǎn)的直線l的方程;(2)己知點(diǎn)A在橢圓C:上,且(1)中的直線l過橢圓C的左焦點(diǎn)。求橢圓C的標(biāo)準(zhǔn)方程.
參考答案
1.B
2.B拋物線方程為y2=2px=2*4x,焦點(diǎn)坐標(biāo)為(p/2,0)=(2,0),準(zhǔn)線方程為x=-p/2=-2,則焦點(diǎn)到準(zhǔn)線的距離為p/2-(-p/2)=p=4。
3.A
4.A
5.D從中隨即取出2個(gè)球,每個(gè)球被取到的可能性相同,因此所有的取法為,所取出的的2個(gè)球至少有1個(gè)白球,所有的取法為,由古典概型公式可知P=5/6.
6.D程序框圖的運(yùn)算.因x=-5,不滿足>0,所以在第一個(gè)判斷框中
7.B不等式的性質(zhì)。由不等式性質(zhì)得B正確.
8.D
9.A三角函數(shù)圖像的性質(zhì).由題圖可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五點(diǎn)作圖法可知2×π/3+α=π/2,所以α=-π/6所以函數(shù)的解析式為y=2sin(2x-π/6)
10.D由,則兩者平行。
11.0
12.2n-1
13.7
14.12,高三年級(jí)應(yīng)抽人數(shù)為300*40/1000=12。
15.2對(duì)數(shù)的運(yùn)算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.
16.-1
17.(1,2)
18.100分層抽樣方法.各層之比為200:1200:1000=1:6:5推出從女生中抽取的人數(shù)240×5/12=100.
19.-5或3
20.(x-1)2+(y-2)2=4圓標(biāo)準(zhǔn)方程.圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-2)2=r2,a=1,b=2,r=2
21.
22.
23.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
24.
25.
26.
27.
∴PD//平面ACE.
28.證明:考慮對(duì)數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時(shí),y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
29.
30.
31.
32.由題意可設(shè)所求拋物線的方程為準(zhǔn)線方程為則y=-3代入得:p=12所求拋物線方程為x2=24(y-3)
33.(1)∵雙曲線C的右焦點(diǎn)為F1(2,0),∴c=2又點(diǎn)F1到C1的一條漸近線的距離為,∴,即以解得b=
34.
35.
∴
∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴
∴得0<b<∵b∈Z∴b=1∴(2)設(shè)-1<<<0∵
∴
若時(shí)
故當(dāng)X<-1時(shí)為增函數(shù);當(dāng)-1≤X<0為減函數(shù)
36.
37.
38.解:(1)斜率k=5/3,設(shè)直線l的方程5x-3y+m=0,直線l經(jīng)過點(diǎn)(0,-8/3),所以m=8,直線l的方程為5x-3y-8=0。(2)設(shè)圓心為C(a,b),圓與兩坐標(biāo)軸相切,故a=±b又圓心在直線5x-3y-8=0上,將a=b或a=-b代入直線方程得:a=4或a=1當(dāng)a=4時(shí),b
=4,此時(shí)r=4,圓的方程為(x-4)2
+(y-4)2=16當(dāng)a=1時(shí),b
=-1,此時(shí)r=1,圓的方程為(x-1)2
+(y+1)2=1
39.
40.解:(1)直線l過A(0,2),B(-2,-2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024專項(xiàng)加盟業(yè)務(wù)合作協(xié)議
- 城市快速路護(hù)欄設(shè)備買賣協(xié)議2024
- 2024屆廣東省深圳實(shí)驗(yàn)學(xué)校高考模擬考試卷數(shù)學(xué)試題試卷
- 齊齊哈爾大學(xué)《計(jì)算機(jī)網(wǎng)絡(luò)》2023-2024學(xué)年期末試卷
- 齊齊哈爾大學(xué)《鋼結(jié)構(gòu)設(shè)計(jì)原理》2022-2023學(xué)年第一學(xué)期期末試卷
- 四居室房屋出售合同范本
- 吊車司機(jī)勞動(dòng)合同范本
- 政府采購(gòu)中小企業(yè)合同范本
- 五年級(jí)語文“黃道婆”說課稿
- “擁有健康心理 成就精彩人生”發(fā)言稿
- 只爭(zhēng)朝夕不負(fù)韶華崗位競(jìng)聘述職報(bào)告
- 農(nóng)場(chǎng)工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測(cè)真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識(shí)培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項(xiàng)
- 《股票入門》課件
- 《不為人知的間歇泉》課件
評(píng)論
0/150
提交評(píng)論