裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析_第1頁
裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析_第2頁
裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析_第3頁
裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析_第4頁
裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析_第5頁
免費預(yù)覽已結(jié)束,剩余9頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

精選高中模擬試卷裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析班級__________姓名__________分數(shù)__________一、選擇題1.“1<m<3”是“方程+=1表示橢圓”的()A.充分不用要條件B.必要不充分條件C.充要條件D.既不充分也不用要條件2.設(shè)公差不為零的等差數(shù)列an的前n項和為Sn,若a2(aa),則S7()423a47B.14C.7D.14A.54【命題妄圖】本題觀察等差數(shù)列的通項公式及其前n項和,意在觀察運算求解能力.3.設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f(′x),且2f(x)+xf(′x)>x2,下面的不等式在R內(nèi)恒建立的是()A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x4.直線的傾斜角是()A.B.C.D.5.已知f(x)是定義在R上的奇函數(shù),且f(x﹣2)=f(x+2),當(dāng)0<x<2時,f(x)=1﹣log2(x+1),則當(dāng)0<x<4時,不等式(x﹣2)f(x)>0的解集是()A.(0,1)∪(2,3)B.(0,1)∪(3,4)C.(1,2)∪(3,4)D.(1,2)∪(2,3)6.直線3xy10的傾斜角為()A.150B.120C.60D.307.若,則以下不等式必然建立的是()A.B.C.D.8.經(jīng)過點M1,1且在兩軸上截距相等的直線是()A.xy20B.xy10C.x1或y1D.xy20或xy09.若函數(shù)y=x2+(2a﹣1)x+1在區(qū)間(﹣∞,2]上是減函數(shù),則實數(shù)a的取值范圍是()A.[﹣,+∞)B.(﹣∞,﹣]C.[,+∞)D.(﹣∞,]10.設(shè)雙曲線焦點在y軸上,兩條漸近線為,則該雙曲線離心率e=()第1頁,共14頁精選高中模擬試卷A.5B.C.D.11.直線2x+y+7=0的傾斜角為()A.銳角B.直角C.鈍角D.不存在12.是首項,公差的等差數(shù)列,若是,則序號等于()A.667B.668C.669D.670二、填空題13.長方體ABCD﹣A1B1C1D1的8個極點都在球O的表面上,E為AB的中點,CE=3,異面直線A1C1與CE所成角的余弦值為,且四邊形ABB1A1為正方形,則球O的直徑為.14.已知函數(shù)f(x)是定義在R上的單調(diào)函數(shù),且滿足對任意的實數(shù)x都有f[f(x)﹣2x]=6,則f(x)+f(﹣x)的最小值等于.15.如圖,已知m,n是異面直線,點A,Bm,且AB6;點C,Dn,且CD4.若M,N分別是AC,BD的中點,MN22,則m與n所成角的余弦值是______________.【命題妄圖】本題觀察用空間向量知識求異面直線所成的角,觀察空間想象能力,推理論證能力,運算求解能力.16.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個數(shù)字相鄰,則滿足條件的不同樣五位數(shù)的個數(shù)是.(注:結(jié)果請用數(shù)字作答)【命題妄圖】本題觀察計數(shù)原理、排列與組合的應(yīng)用,同時也浸透了分類談?wù)摰乃枷?,本題綜合性強,難度較大.17.已知函數(shù)f(x)=恰有兩個零點,則a的取值范圍是.22﹣2x+4y=0,則x﹣2y的最大值為.18.若實數(shù)x,y滿足x+y三、解答題19.已知橢圓C:=1(a>2)上一點P到它的兩個焦點F1(左),F(xiàn)2(右)的距離的和是6.(1)求橢圓C的離心率的值;(2)若PF2⊥x軸,且p在y軸上的射影為點Q,求點Q的坐標.第2頁,共14頁精選高中模擬試卷20.(本小題滿分10分)求經(jīng)過點P1,2的直線,且使A2,3,B0,5到它的距離相等的直線方程.21.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直線AD為旋轉(zhuǎn)軸旋轉(zhuǎn)一周獲取以下列圖的幾何體σ.(1)求幾何體σ的表面積;(2)點M時幾何體σ的表面上的動點,當(dāng)周圍體MABD的體積為,試判斷M點的軌跡可否為2個菱形.2222.(本小題滿分12分)已知圓C:x1y225,直線第3頁,共14頁精選高中模擬試卷L:2m1xm1y7m40mR.1)證明:無論m取什么實數(shù),L與圓恒交于兩點;2)求直線被圓C截得的弦長最小時L的方程.23.如圖,在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上搬動.(1)證明:BC1∥平面ACD1.(2)當(dāng)時,求三棱錐E﹣ACD1的體積.24.如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)必然的角度(小于180°)到ABEF的地址.(Ⅰ)求證:CE∥平面ADF;(Ⅱ)若K為線段BE上異于B,E的點,CE=2.設(shè)直線AK與平面BDF所成角為φ,當(dāng)30°≤φ≤45時,求BK的取值范圍.第4頁,共14頁精選高中模擬試卷第5頁,共14頁精選高中模擬試卷裕華區(qū)二中2018-2019學(xué)年上學(xué)期高二數(shù)學(xué)12月月考試題含解析(參照答案)一、選擇題1.【答案】B【解析】解:若方程+=1表示橢圓,則滿足,即,即1<m<3且m≠2,此時1<m<3建立,即必要性建立,當(dāng)m=2時,滿足1<m<3,但此時方程+=1等價為為圓,不是橢圓,不滿足條件.即充分性不行立故“1<m<3”是“方程+=1表示橢圓”的必要不充分條件,應(yīng)選:B【談?wù)摗勘绢}主要觀察充分條件和必要條件的判斷,依照橢圓的定義和方程是解決本題的要點.2.【答案】C.【解析】依照等差數(shù)列的性質(zhì),a2(aa)a3d2(ada2d,)化簡得a1d,∴4231117a176d14dS727,應(yīng)選C.a4a13d2d3.【答案】A【解析】解:∵2f(x)+xf′(x)>x2,令x=0,則f(x)>0,故可消除B,D.若是f(x)=x2+0.1,時已知條件2f(x)+xf′(x)>x2建立,但f(x)>x未必建立,所以C也是錯的,應(yīng)選A應(yīng)選A.4.【答案】A【解析】解:設(shè)傾斜角為α,∵直線的斜率為,第6頁,共14頁精選高中模擬試卷∴tanα=,0°<α<180°,∴α=30°應(yīng)選A.【談?wù)摗勘绢}觀察了直線的傾斜角與斜率之間的關(guān)系,屬于基礎(chǔ)題,應(yīng)當(dāng)掌握.5.【答案】D【解析】解:∵f(x)是定義在R上的奇函數(shù),且f(x﹣2)=f(x+2),f(0)=0,且f(2+x)=﹣f(2﹣x),f(x)的圖象關(guān)于點(2,0)中心對稱,又0<x<2時,f(x)=1﹣log2(x+1),故可作出fx(x)在0<x<4時的圖象,由圖象可知當(dāng)x∈(1,2)時,x﹣2<0,f(x)<0,∴(x﹣2)f(x)>0;當(dāng)x∈(2,3)時,x﹣2>0,f(x)>0,∴(x﹣2)f(x)>0;∴不等式(x﹣2)f(x)>0的解集是(1,2)∪(2,3)應(yīng)選:D【談?wù)摗勘绢}觀察不等式的解法,涉及函數(shù)的性質(zhì)和圖象,屬中檔題.6.【答案】C【解析】試題解析:由直線3xy10,可得直線的斜率為k3,即tan360,應(yīng)選C.1考點:直線的斜率與傾斜角.第7頁,共14頁精選高中模擬試卷7.【答案】D【解析】因為,有可能為負值,所以消除A,C,因為函數(shù)為減函數(shù)且,所以,消除B,應(yīng)選D答案:D8.【答案】D【解析】考點:直線的方程.9.【答案】B【解析】解:∵函數(shù)y=x2+(2a﹣1)x+1的圖象是方向向上,以直線x=為對稱軸的拋物線又∵函數(shù)在區(qū)間(﹣∞,2]上是減函數(shù),故2≤解得a≤﹣應(yīng)選B.10.【答案】C【解析】解:∵雙曲線焦點在y軸上,故兩條漸近線為y=±x,又已知漸近線為,∴=,b=2a,故雙曲線離心率e====,應(yīng)選C.【談?wù)摗勘绢}觀察雙曲線的標準方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,判斷漸近線的斜率=,是解題的要點.11.【答案】C第8頁,共14頁精選高中模擬試卷【解析】【解析】設(shè)直線2x+y+7=0的傾斜角為θ,則tanθ=﹣2,即可判斷出結(jié)論.【解答】解:設(shè)直線2x+y+7=0的傾斜角為θ,則tanθ=﹣2,則θ為鈍角.應(yīng)選:C.12.【答案】C【解析】由已知,由得,應(yīng)選C答案:C二、填空題13.【答案】4或.【解析】解:設(shè)AB=2x,則AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直徑為=4,或AB=2,BC=,球O的直徑為=.故答案為:4或.14.【答案】6.【解析】解:依照題意可知:f(x)﹣2x是一個固定的數(shù),記為a,則f(a)=6,f(x)﹣2x=a,即f(x)=a+2x,當(dāng)x=a時,第9頁,共14頁精選高中模擬試卷又∵a+2a=6,∴a=2,f(x)=2+2x,f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,當(dāng)且僅當(dāng)x=0時建立,f(x)+f(﹣x)的最小值等于6,故答案為:6.【談?wù)摗勘绢}觀察函數(shù)的最值,觀察運算求解能力,注意解題方法的積累,屬于中檔題.515.【答案】12【解析】16.【答案】48【解析】17.【答案】(﹣3,0).【解析】解:由題意,a≥0時,x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒建立,f(x)在(0,+∞)上至多一個零點;x≥0,函數(shù)y=|x﹣3|+a無零點,第10頁,共14頁精選高中模擬試卷∴a≥0,不吻合題意;﹣3<a<0時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,32函數(shù)y=2x﹣ax﹣1在(﹣∞,0)上無零點,吻合題意;a=﹣3時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,函數(shù)y=2x3﹣ax2﹣1在(﹣∞,0)上有零點﹣1,不吻合題意;a<﹣3時,函數(shù)y=|x﹣3|+a在[0,+∞)上有兩個零點,函數(shù)y=2x3﹣ax2﹣1在(﹣∞,0)上有兩個零點,不吻合題意;綜上所述,a的取值范圍是(﹣3,0).故答案為(﹣3,0).18.【答案】10【解析】【解析】先配方為圓的標準方程再畫出圖形,設(shè)z=x﹣2y,再利用z的幾何意義求最值,只要求出直線z=x﹣2y過圖形上的點A的坐標,即可求解.2222,【解答】解:方程x+y﹣2x+4y=0可化為(x﹣1)+(y+2)=5即圓心為(1,﹣2),半徑為的圓,(如圖)設(shè)z=x﹣2y,將z看做斜率為的直線z=x﹣2y在y軸上的截距,經(jīng)平移直線知:當(dāng)直線z=x﹣2y經(jīng)過點A(2,﹣4)時,z最大,最大值為:10.故答案為:10.三、解答題19.【答案】第11頁,共14頁精選高中模擬試卷【解析】解:(1)依照橢圓的定義得2a=6,a=3;∴c=;∴;即橢圓的離心率是;(2);∴x=帶入橢圓方程得,y=;所以Q(0,).20.【答案】4xy20或x1.【解析】21.【答案】【解析】解:(1)依照題意,得;該旋轉(zhuǎn)體的下半部分是一個圓錐,上半部分是一個圓臺中間挖空一個圓錐而剩下的幾何體,其表面積為S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S△ABD=××2×sin135°=1,所以要使周圍體MABD的體積為,只要M點到平面ABCD的距離為1,因為在空間中有兩個平面到平面ABCD的距離為1,它們與幾何體σ的表面的交線組成2個曲邊四邊形,不是2個菱形.第12頁,共14頁精選高中模擬試卷【談?wù)摗勘绢}觀察了空間幾何體的表面積與體積的計算問題,也觀察了空間想象能力的應(yīng)用問題,是綜合性題目.22.【答案】(1)證明見解析;(2)2xy50.【解析】試題解析:(1)L的方程整理為xy4m2xy70,列出方程組,得出直線過圓內(nèi)一點,即可證明;(2)由圓心M1,2,當(dāng)截得弦長最小時,則LAM,利用直線的點斜式方程,即可求解直線的方程.1111](2)圓心M1,2,當(dāng)截得弦長最小時,則LAM,1得L的方程y12x3即2xy50.由kAM2考點:直線方程;直線與圓的地址關(guān)系.23.【答案】【解析】(1)證明:∵AB∥C1D1,AB=C1D1,∴四邊形ABC1D1是平行四邊形,BC1∥AD1,又∵AD1?平面ACD1,BC1?平面ACD1,BC1∥平面ACD1.(2)解:S△ACE=AEAD==.∴V=V===.【談?wù)摗勘绢}觀察了線面平行的判斷,長方體的結(jié)構(gòu)特色,棱錐的體積計算,屬于中檔題.第13頁,共14頁精選高中模擬試卷24.【答案】【解析】解:(Ⅰ)證明:正方形ABCD中,CDBA,正方形ABEF中,EFBA.∴EFCD,∴四邊形EFDC為平行四邊形,∴CE∥DF.又DF?平面ADF,CE?平面ADF,∴CE∥平面ADF.(Ⅱ)解:∵BE=BC=2,CE=,∴CE2=BC2+BE2.∴△BCE為直角三角形,BE⊥BC,又BE⊥BA,BC∩BA=B,BC、BA?平面ABCD,∴BE⊥平面ABCD.以B為原點,、、的方向分別為x軸、y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論