(新高考數(shù)學(xué))高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)18《 空間中的角度和距離問題》解析版_第1頁
(新高考數(shù)學(xué))高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)18《 空間中的角度和距離問題》解析版_第2頁
(新高考數(shù)學(xué))高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)18《 空間中的角度和距離問題》解析版_第3頁
(新高考數(shù)學(xué))高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)18《 空間中的角度和距離問題》解析版_第4頁
(新高考數(shù)學(xué))高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)18《 空間中的角度和距離問題》解析版_第5頁
已閱讀5頁,還剩57頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

考點(diǎn)18空間中的角度和距離問題(核心考點(diǎn)講與練)1.異面直線所成的角設(shè)a,b分別是兩異面直線l1,l2的方向向量,則a與b的夾角βl1與l2所成的角θ范圍(0,π)eq\b\lc\(\rc\](\a\vs4\al\co1(0,\f(π,2)))求法cosβ=eq\f(a·b,|a||b|)cosθ=|cosβ|=eq\f(|a·b|,|a||b|)2.直線和平面所成的角(1)定義:一條斜線和它在平面內(nèi)的射影所成的角叫做斜線和平面所成的角,一條直線垂直于平面,則它們所成的角是直角;一條直線和平面平行或在平面內(nèi),則它們所成的角是0°的角.(2)范圍:eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(π,2))).3.求直線與平面所成的角設(shè)直線l的方向向量為a,平面α的法向量為n,直線l與平面α所成的角為θ,則sinθ=|cos〈a,n〉|=eq\f(|a·n|,|a||n|).4.二面角(1)定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角;(2)二面角的平面角:在二面角的棱上任取一點(diǎn),以該點(diǎn)為垂足,在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所構(gòu)成的角叫做二面角的平面角.(3)二面角的范圍:[0,π].5.求二面角的大小(1)如圖①,AB,CD是二面角α-l-β的兩個(gè)面內(nèi)與棱l垂直的直線,則二面角的大小θ=__〈eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))〉.(2)如圖②③,n1,n2分別是二面角α-l-β的兩個(gè)半平面α,β的法向量,則二面角的大小θ滿足|cosθ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1與n2的夾角(或其補(bǔ)角).6.點(diǎn)到平面的距離用向量方法求點(diǎn)B到平面距離基本思路:確定平面法向量,在平面內(nèi)取一點(diǎn)A,求向量eq\o(AB,\s\up6(→))到法向量的投影向量,投影向量的長度即為所要求的距離.如圖平面α的法向量為n,點(diǎn)B到平面α的距離d=eq\f(|\o(AB,\s\up6(→))·n|,|n|).1.異面直線所成的角,若向量a、b分別是異面直線SKIPIF1<0與SKIPIF1<0的方向向量,異面直線SKIPIF1<0與SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0.2.設(shè)直線SKIPIF1<0的方向向量為SKIPIF1<0,平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0.3.設(shè)向量為m平面SKIPIF1<0的一個(gè)法向量,向量n為平面SKIPIF1<0的一個(gè)法向量,平面SKIPIF1<0與平面SKIPIF1<0所稱的二面角為SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0.SKIPIF1<0或SKIPIF1<0.4.點(diǎn)到平面的距離的求法如圖,設(shè)AB為平面α的一條斜線段,n為平面α的法向量,則點(diǎn)B到平面α的距離d=.5.求參數(shù)的值與范圍是高中數(shù)學(xué)中的常見題型.立體幾何中含參數(shù)的問題,解決起來既有常規(guī)的函數(shù)和不等式法,亦有具有立體幾何特征的極限位置、幾何直觀、化曲為直等一些特殊方法.6.存在性問題,先假設(shè)存在,推證滿足條件的結(jié)論,若結(jié)論正確則存在,若結(jié)論不正確則不存在.解決存在性問題應(yīng)注意以下幾點(diǎn):(1)當(dāng)條件和結(jié)論不唯一時(shí)要分類討論;(2)當(dāng)給出結(jié)論而要推導(dǎo)出存在的條件時(shí),先假設(shè)成立,再推出條件;(3)當(dāng)條件和結(jié)論都不知,按常規(guī)方法解題很難時(shí),要思維開放,采取另外的途徑.線線、線面、面面角1.(2021貴州省遵義航天高級中學(xué)高三月考)如圖,四棱錐中,底面是矩形,,,SKIPIF1<0,,是等腰三角形,點(diǎn)是棱的中點(diǎn),則異面直線與所成角的余弦值是()A.B.C.SKIPIF1<0D.【答案】B【分析】以為坐標(biāo)原點(diǎn),建立坐標(biāo)系,寫出點(diǎn)的坐標(biāo),以及直線的方向向量,即可用向量法求得結(jié)果.【詳解】因?yàn)?,,兩兩垂直,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系.又因?yàn)?,SKIPIF1<0,所以,,,,因?yàn)槭抢獾闹悬c(diǎn),所以,所以,,所以,故選:B.2.(2022·湖南衡陽·二模)如圖,已知圓臺SKIPIF1<0的下底面半徑為2,上底面半徑為1,母線與底面所成的角為SKIPIF1<0為母線,平面SKIPIF1<0平面SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)時(shí),求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)過點(diǎn)SKIPIF1<0作平面SKIPIF1<0的垂線,垂足為SKIPIF1<0,證明SKIPIF1<0平面SKIPIF1<0,原題即得證;(2)以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線分別為SKIPIF1<0軸?SKIPIF1<0軸?SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,利用向量法求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.(1)證明:過點(diǎn)SKIPIF1<0作平面SKIPIF1<0的垂線,垂足為SKIPIF1<0,如圖,則SKIPIF1<0是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0.連接SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為等邊三角形.因?yàn)辄c(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)解:以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線分別為SKIPIF1<0軸?SKIPIF1<0軸?SKIPIF1<0軸,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0取SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0所以直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.3.(2022·河南河南·三模(理))如圖,SKIPIF1<0為圓錐的頂點(diǎn),SKIPIF1<0是圓錐底面的圓心,SKIPIF1<0為底面直徑,SKIPIF1<0,SKIPIF1<0是底面的內(nèi)接正三角形,且SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0上一點(diǎn).(1)若SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0;(2)當(dāng)SKIPIF1<0為何值時(shí),直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大?【答案】(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大.【分析】(1)通過勾股定理列方程,化簡求得SKIPIF1<0.(2)建立空間直角坐標(biāo)系,利用利用向量法求得直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值,結(jié)合基本不等式求得SKIPIF1<0時(shí),此正弦值最大.(1)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,由于三角形SKIPIF1<0是等邊三角形,圓SKIPIF1<0是其外接圓,SKIPIF1<0是圓SKIPIF1<0的直徑,所以SKIPIF1<0垂直平分SKIPIF1<0,SKIPIF1<0,在三角形SKIPIF1<0中,由正弦定理得SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,所以三角形SKIPIF1<0是等腰直角三角形,所以SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,結(jié)合圓錐的幾何性質(zhì),建立如圖所示空間直角坐標(biāo)系,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,故可設(shè)SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號成立,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大.4.(2022新高考地區(qū)專用)如圖,在四棱錐中,底面中,SKIPIF1<0,側(cè)面平面,且,點(diǎn)在棱上,且.則二面角的余弦值為____________【答案】.【分析】建立空間直角坐標(biāo)系,分別求平面和平面的法向量,利用法向量二面角的余弦值.【詳解】如圖,取的中點(diǎn),連接,.由條件可知,,兩兩垂直,以,,所在直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,則,,,,因?yàn)?,所以.所以,,,設(shè)平面的法向量為,則即令,則.設(shè)平面的法向量為,則即令,則=,,結(jié)合圖象可知二面角為銳角,所以二面角的余弦值為.故答案為:5.(2022·遼寧鞍山·二模)如圖,在梯形ABCD中,AB∥CD,∠BCD=SKIPIF1<0,四邊形ACFE為矩形,且CF⊥平面ABCD,AD=CD=BC=CF=1.(1)求證:EF⊥平面BCF;(2)點(diǎn)M在線段EF上運(yùn)動(dòng),當(dāng)點(diǎn)M在什么位置時(shí),平面MAB與平面FCB所成銳二面角最大?并求此時(shí)銳二面角的余弦值.【答案】(1)證明見解析(2)M與F重合時(shí),平面MAB與平面FCB所成銳二面角最大,余弦值為SKIPIF1<0【分析】(1)在梯形ABCD中,由分析知,AC⊥BC,因?yàn)镃F⊥平面ABCD,所以AC⊥CF,進(jìn)一步得AC⊥平面BCF,又因?yàn)锳C∥EF,因此EF⊥平面BCF.(2)因?yàn)镃F⊥平面ABCD,AC⊥BC,以點(diǎn)C為坐標(biāo)原點(diǎn),CA、CB、CF所在直線分別為x、y、z軸建立空間直角坐標(biāo)系,分別求出平面SKIPIF1<0和平面FCB的法向量,然后結(jié)合二次函數(shù)求最值的方法求解平面SKIPIF1<0和平面FCB所成的銳二面角的最大值.(1)證明:在梯形ABCD中,AB∥CD,AD=CD=BC=1,故梯形ABCD為等腰梯形,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,則SKIPIF1<0,∴AC⊥BC,因?yàn)镃F⊥平面ABCD,ACSKIPIF1<0平面ABCD,∴AC⊥CF

∵SKIPIF1<0,

∴AC⊥平面BCF,因?yàn)樗倪呅蜛CFE為矩形,則AC∥EF,因此,EF⊥平面BCF(2)因?yàn)镃F⊥平面ABCD,AC⊥BC,以點(diǎn)C為坐標(biāo)原點(diǎn),CA、CB、CF所在直線分別為x、y、z軸建立如下圖所示的空間直角坐標(biāo)系,在Rt△ABC中,SKIPIF1<0,.則A(SKIPIF1<0,0,0)、B(0,1,0)、C(0,0,0)、F(0,0,1)、E(SKIPIF1<0,0,1),設(shè)點(diǎn)M(t,0,1),其中SKIPIF1<0設(shè)平面MAB的法向量為SKIPIF1<0SKIPIF1<0,SKIPIF1<0由SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0,.易知平面FCB的一個(gè)法向量為SKIPIF1<0SKIPIF1<0,所以,當(dāng)SKIPIF1<0,即M與F重合時(shí),SKIPIF1<0取最小值,此時(shí)平面MAB與平面FCB所成銳二面角最大,此時(shí),平面MAB與平面FCB所成銳二面角的余弦值為SKIPIF1<06.(2022·重慶八中模擬預(yù)測)如圖,三棱柱ABC-A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.(1)證明:AC1⊥A1B;(2)設(shè)直線AA1與平面BCC1B1的距離為SKIPIF1<0,求二面角A1-AB-C的余弦值.【答案】(1)證明見解析;(2)二面角A1-AB--C的余弦值為SKIPIF1<0.【分析】(1)由條件證明SKIPIF1<0,SKIPIF1<0,由線面垂直的判定定理證明SKIPIF1<0平面SKIPIF1<0,由此證明SKIPIF1<0;(2)建立空間直角坐標(biāo)系,結(jié)合條件直線AA1與平面BCC1B1的距離為SKIPIF1<0,確定相關(guān)點(diǎn)的坐標(biāo),利用向量方法求二面角A1-AB-C的余弦值.(1)∵點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∴SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,∴

SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,四邊形SKIPIF1<0為平行四邊形,∴四邊形SKIPIF1<0為菱形,故SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴

SKIPIF1<0;(2)以C為坐標(biāo)原點(diǎn),以SKIPIF1<0為x軸,SKIPIF1<0軸,SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,由題設(shè)有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)平面BCC1B1的法向量SKIPIF1<0,則SKIPIF1<0,因SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,又依題設(shè),直線AA1與平面BCC1B1的距離為SKIPIF1<0,所以SKIPIF1<0.代入①得SKIPIF1<0(舍去)或SKIPIF1<0,于是SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0為平面SKIPIF1<0的法向量,故SKIPIF1<0,所以二面角A1-AB--C的余弦值為SKIPIF1<0.7.(2022·山東淄博·模擬預(yù)測)如圖,已知三棱柱SKIPIF1<0的棱長均為2,SKIPIF1<0,SKIPIF1<0.(1)證明:平面SKIPIF1<0平面ABC;(2)設(shè)M為側(cè)棱SKIPIF1<0上的點(diǎn),若平面SKIPIF1<0與平面ABC夾角的余弦值為SKIPIF1<0,求點(diǎn)M到直線SKIPIF1<0距離.【答案】(1)見解析(2)SKIPIF1<0【分析】(1)取AC的中點(diǎn)O,連接SKIPIF1<0,利用勾股定理證明SKIPIF1<0SKIPIF1<0從而證得SKIPIF1<0平面ABC,然后利用面面垂直的判定定理證明即可.(2)以O(shè)A所在直線為x軸,以O(shè)B所在直線為y軸,以SKIPIF1<0所在直線為z軸,建立空間直角坐標(biāo)系,寫出各點(diǎn)坐標(biāo),設(shè)SKIPIF1<0得到點(diǎn)M的坐標(biāo),求出平面SKIPIF1<0與平面ABC的法向量,由余弦值可確定SKIPIF1<0值,然后利用點(diǎn)到直線的距離公式計(jì)算即可.(1)取AC的中點(diǎn)O,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0由題設(shè)可知,SKIPIF1<0為邊長為2的等邊三角形,所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0平面ABC;SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面ABC;(2)以O(shè)A所在直線為x軸,以O(shè)B所在直線為y軸,以SKIPIF1<0所在直線為z軸,建立空間直角坐標(biāo)系,所以SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0則SKIPIF1<0即SKIPIF1<0取SKIPIF1<0所以SKIPIF1<0因?yàn)镾KIPIF1<0為平面ABC的一個(gè)法向量,設(shè)平面SKIPIF1<0與平面ABC夾角為SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0所以點(diǎn)M到直線SKIPIF1<0距離SKIPIF1<0空間距離1.(2022江蘇省南通市海安市高三學(xué)業(yè)質(zhì)量監(jiān)測)與正方體ABCD-A1B1C1D1的三條棱AB,CC1,A1D1所在直線的距離相等的點(diǎn)共有()A.1個(gè)B.2個(gè)C.3個(gè)D.無數(shù)個(gè)【答案】D【分析】首先以為SKIPIF1<0原點(diǎn),分別為軸,建立空間直角坐標(biāo)系,設(shè),得到,設(shè)SKIPIF1<0為上一點(diǎn),得到到棱的距離是,同理得到到棱的距離也是,即可得到答案.【詳解】以為SKIPIF1<0原點(diǎn),分別為軸,建立空間直角坐標(biāo)系,如圖所示:設(shè),則,,,設(shè)SKIPIF1<0為上一點(diǎn),作平面,垂足為,過作,垂足為,所以為點(diǎn)到棱的距離.又因?yàn)?,,則,同理到棱的距離也是,所以上任意一點(diǎn)到棱的距離都相等,所以與三條棱所在直線的距離相等的點(diǎn)共有無數(shù)個(gè).故選:D2.(2021山東省東營市廣饒縣第一中學(xué)高三上學(xué)期10月月考)如圖,在四棱臺SKIPIF1<0中,底面為矩形,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見解析;(2)SKIPIF1<0.【分析】(1)通過面面垂直的性質(zhì)定理證得SKIPIF1<0平面SKIPIF1<0,由此證得SKIPIF1<0,結(jié)合SKIPIF1<0證得SKIPIF1<0平面SKIPIF1<0.(2)建立空間直角坐標(biāo)系,由SKIPIF1<0與平面SKIPIF1<0所成角計(jì)算出SKIPIF1<0,利用向量法計(jì)算出點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【詳解】(1)在梯形SKIPIF1<0中,因?yàn)镾KIPIF1<0.所以SKIPIF1<0,連接SKIPIF1<0,由余弦定理可得SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0∵平面SKIPIF1<0平面SKIPIF1<0且交于SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)連接SKIPIF1<0,由(1)可知:SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為原點(diǎn),以SKIPIF1<0?SKIPIF1<0分別為SKIPIF1<0軸?SKIPIF1<0軸正半軸,過SKIPIF1<0作垂線為SKIPIF1<0軸,建立空間直角坐標(biāo)系,如圖:∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0即為SKIPIF1<0與平面SKIPIF1<0所成的角,∴SKIPIF1<0.在SKIPIF1<0中,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0,故點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為:SKIPIF1<0,所以點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.與參數(shù)有關(guān)的問題1.(2021廣東省茂名市五校聯(lián)盟第三次聯(lián)考)如圖所示,點(diǎn)P在圓柱的上底面圓周上,四邊形為圓柱的下底面的內(nèi)接四邊形,且為圓柱下底而的直徑,為圓柱的母線,且,圓柱的底面半徑為1.(1)證明:;(2),B為的中點(diǎn),點(diǎn)Q在線段上,記,當(dāng)二面角的余弦值為時(shí),求的值.【答案】(1)證明見解析;(2).【分析】(1)根據(jù)為直徑,得到,再根據(jù)為母線,易得,然后利用線面垂直的判定定理證明;(2)分別以向量為x,y,z軸,建立空間直角坐標(biāo)系,分別求得平面的一個(gè)法向量和平面的法向量可取為,然后由求解.【詳解】(1)因?yàn)闉橹睆?,點(diǎn)D在圓上且不同于A,C點(diǎn),所以,又因?yàn)闉槟妇€,所以平面,又平面,從而,又,所以平面SKIPIF1<0,又平面SKIPIF1<0,所以.(2)由(1)知兩兩相互垂直,所以分別以向量為x,y,z軸,建立空間直角坐標(biāo)系,因?yàn)?,圓柱的底面直徑為2,所以,所以,又B為的中點(diǎn),所以,即為正方形,所以,由,得,所以,設(shè)平面的一個(gè)法向量為,則,即,取,又因?yàn)槠矫娴姆ㄏ蛄靠扇?,所以,由題知,所以,解得(舍)或,所以的值為探究性問題1.(2021廣東省深圳市光明區(qū)高三第一調(diào)研)如圖,在四棱錐中,,,,,.(1)求證:;(2)在棱上是否存在點(diǎn)G,使得二面角的大小為30°?若存在,確定點(diǎn)G的位置;若不存在,請說明理由.【答案】(1)證明見解析;(2)點(diǎn)G為的中點(diǎn)時(shí),二面角的大小為30°,證明見解析.【分析】(1)需要勾股定理證明AD⊥PD,利用線面垂直的判定定理得到⊥面ABCD,即可證明;(2)以D為原點(diǎn),分別為x,y,z軸正方向建立空間直角坐標(biāo)系,用向量法求解.【詳解】(1)因?yàn)?,,所以,△ADP為直角三角形,所以AD⊥PD.又,,面ABCD,面ABCD,所以⊥面ABCD,所以.(2)由題意可知:ABCD為一個(gè)等腰梯形.過D作DE⊥AB于E,則.以D為原點(diǎn),分別為x,y,z軸正方向建立空間直角坐標(biāo)系.則:顯然即為平面ABC的一個(gè)法向量.假設(shè)在棱上存在點(diǎn)G,使得二面角的大小為30°.不妨設(shè),則,.設(shè)為面GAB的有一個(gè)法向量,則,即,不妨設(shè)x=1,則有:.因?yàn)槎娼堑拇笮?0°,所以,即,即,解得:.即點(diǎn)G為的中點(diǎn)時(shí),二面角的大小為30°.1.(2021年全國高考乙卷)在正方體SKIPIF1<0中,P為SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0與SKIPIF1<0所成的角為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】平移直線SKIPIF1<0至SKIPIF1<0,將直線SKIPIF1<0與SKIPIF1<0所成的角轉(zhuǎn)化為SKIPIF1<0與SKIPIF1<0所成的角,解三角形即可.【詳解】如圖,連接SKIPIF1<0,因?yàn)镾KIPIF1<0∥SKIPIF1<0,所以SKIPIF1<0或其補(bǔ)角為直線SKIPIF1<0與SKIPIF1<0所成的角,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0設(shè)正方體棱長為2,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D2.(2021年全國高考乙卷)如圖,四棱錐SKIPIF1<0的底面是矩形,SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),且SKIPIF1<0.(1)求SKIPIF1<0;(2)求二面角SKIPIF1<0的正弦值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【分析】(1)以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0所在直線分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0軸建立空間直角坐標(biāo)系,設(shè)SKIPIF1<0,由已知條件得出SKIPIF1<0,求出SKIPIF1<0的值,即可得出SKIPIF1<0的長;(2)求出平面SKIPIF1<0、SKIPIF1<0的法向量,利用空間向量法結(jié)合同角三角函數(shù)的基本關(guān)系可求得結(jié)果.【詳解】(1)[方法一]:空間坐標(biāo)系+空間向量法SKIPIF1<0平面SKIPIF1<0,四邊形SKIPIF1<0為矩形,不妨以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0所在直線分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0軸建立如下圖所示的空間直角坐標(biāo)系SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0;[方法二]【最優(yōu)解】:幾何法+相似三角形法如圖,連結(jié)SKIPIF1<0.因?yàn)镾KIPIF1<0底面SKIPIF1<0,且SKIPIF1<0底面SKIPIF1<0,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.從而SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,于是SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.[方法三]:幾何法+三角形面積法如圖,聯(lián)結(jié)SKIPIF1<0交SKIPIF1<0于點(diǎn)N.由[方法二]知SKIPIF1<0.在矩形SKIPIF1<0中,有SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,因?yàn)镸為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(2)[方法一]【最優(yōu)解】:空間坐標(biāo)系+空間向量法設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0,因此,二面角SKIPIF1<0的正弦值為SKIPIF1<0.[方法二]:構(gòu)造長方體法+等體積法如圖,構(gòu)造長方體SKIPIF1<0,聯(lián)結(jié)SKIPIF1<0,交點(diǎn)記為H,由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.過H作SKIPIF1<0的垂線,垂足記為G.聯(lián)結(jié)SKIPIF1<0,由三垂線定理可知SKIPIF1<0,故SKIPIF1<0為二面角SKIPIF1<0的平面角.易證四邊形SKIPIF1<0是邊長為SKIPIF1<0的正方形,聯(lián)結(jié)SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,由等積法解得SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,由勾股定理求得SKIPIF1<0.所以,SKIPIF1<0,即二面角SKIPIF1<0的正弦值為SKIPIF1<0.【整體點(diǎn)評】(1)方法一利用空坐標(biāo)系和空間向量的坐標(biāo)運(yùn)算求解;方法二利用線面垂直的判定定理,結(jié)合三角形相似進(jìn)行計(jì)算求解,運(yùn)算簡潔,為最優(yōu)解;方法三主要是在幾何證明的基礎(chǔ)上,利用三角形等面積方法求得.(2)方法一,利用空間坐標(biāo)系和空間向量方法計(jì)算求解二面角問題是常用的方法,思路清晰,運(yùn)算簡潔,為最優(yōu)解;方法二采用構(gòu)造長方體方法+等體積轉(zhuǎn)化法,技巧性較強(qiáng),需注意進(jìn)行嚴(yán)格的論證.一、單選題1.(2022·山西太原·二模(文))在三棱柱SKIPIF1<0中,各棱長都相等,側(cè)棱垂直于底面,點(diǎn)D是SKIPIF1<0與SKIPIF1<0的交點(diǎn),則AD與平面SKIPIF1<0所成角的正弦值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連SKIPIF1<0、SKIPIF1<0,通過證明SKIPIF1<0平面SKIPIF1<0,可知SKIPIF1<0是AD與平面SKIPIF1<0所成的角,在直角三角形SKIPIF1<0中可求出結(jié)果.【詳解】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連SKIPIF1<0、SKIPIF1<0,如圖:依題意三棱柱SKIPIF1<0為正三棱柱,設(shè)棱長為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0是AD與平面SKIPIF1<0所成的角,所以SKIPIF1<0.所以AD與平面SKIPIF1<0所成角的正弦值是SKIPIF1<0.故選:C2.(2022·全國·模擬預(yù)測(理))如圖為一個(gè)四棱錐與三棱錐的組合體,C,D,E三點(diǎn)共線,已知三棱錐P-ADE四個(gè)面都為直角三角形,且ED⊥AD,PA⊥平面ABCE,PE=3,CD=AD=2,ED=1,則直線PC與平面PAE所成角的正弦值等于(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】本題利用空間向量處理線面夾角問題,SKIPIF1<0.【詳解】如圖建立空間直角坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則有:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)平面PAE的法向量SKIPIF1<0,則有SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0,即直線PC與平面PAE所成角的正弦值為SKIPIF1<0.故選:C.3.(2022·全國·三模(理))在三棱錐SKIPIF1<0中,△ABC是邊長為2的等邊三角形,SKIPIF1<0,SKIPIF1<0,以AB為直徑的球的表面被△PAC截得的曲線長度為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用已知條件求得SKIPIF1<0,利用等體積法求得以AB為直徑的球的球心SKIPIF1<0到平面SKIPIF1<0的距離,設(shè)SKIPIF1<0交球SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0交圓SKIPIF1<0于點(diǎn)SKIPIF1<0,由此可找到以AB為直徑的球SKIPIF1<0的表面被△PAC截得的曲線即為SKIPIF1<0,最后利用弧長公式即可求解.【詳解】設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,由已知得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,以AB為直徑的球,球心為AB的中點(diǎn)SKIPIF1<0,則SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0,則平面SKIPIF1<0與球SKIPIF1<0相交得截面SKIPIF1<0,設(shè)SKIPIF1<0交球SKIPIF1<0于點(diǎn)SKIPIF1<0,截面SKIPIF1<0的半徑為SKIPIF1<0,SKIPIF1<0,則設(shè)SKIPIF1<0交圓SKIPIF1<0于點(diǎn)SKIPIF1<0,即球SKIPIF1<0的表面被△PAC截得的曲線長度為SKIPIF1<0,在SKIPIF1<0△SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故選:SKIPIF1<0.二、多選題4.(2022·山東濟(jì)南·一模)在棱長為1的正方體SKIPIF1<0中,O為正方形SKIPIF1<0的中心,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0平面SKIPIF1<0C.點(diǎn)B到平面SKIPIF1<0的距離為SKIPIF1<0 D.直線BO與直線SKIPIF1<0的夾角為SKIPIF1<0【答案】ABC【分析】根據(jù)線面垂直的判定定理證明SKIPIF1<0平面,可判斷A;連接BD,交AC于E,連接SKIPIF1<0,證明SKIPIF1<0,根據(jù)線面平行的判定定理,可判斷B;利用等體積法,求得點(diǎn)B到平面SKIPIF1<0的距離,判斷C;采用作平行線的方法,求出直線BO與直線SKIPIF1<0的夾角,可判斷D.【詳解】對于A,如圖,連接SKIPIF1<0,則SKIPIF1<0交于點(diǎn)O,正方體SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故A正確;對于B,連接BD,交AC于E,連接SKIPIF1<0,則SKIPIF1<0,故四邊形SKIPIF1<0是平行四邊形,故SKIPIF1<0平面SKIPIF1<0不在平面ACD1,故SKIPIF1<0平面SKIPIF1<0,故B正確;對于C,設(shè)點(diǎn)B到平面SKIPIF1<0的距離為d,因?yàn)镾KIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故C正確;對于D,連接SKIPIF1<0,則SKIPIF1<0即為直線BO與直線SKIPIF1<0的夾角或其補(bǔ)角,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故D錯(cuò)誤,故選:ABC5.(2022·重慶·模擬預(yù)測)如圖,在圓錐SO中,AC為底面圓O的直徑,B是圓O上異于A,C的一點(diǎn),SKIPIF1<0,SKIPIF1<0,則下列結(jié)論中一定正確的是(

)A.圓錐SKIPIF1<0的體積為SKIPIF1<0B.圓錐SKIPIF1<0的表面積為SKIPIF1<0C.三棱錐SKIPIF1<0的體積的最大值為SKIPIF1<0D.存在點(diǎn)B使得直線SB與平面SAC所成角為SKIPIF1<0【答案】AC【分析】根據(jù)錐體的體積、表面積公式判斷A、B、C,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0為直線SKIPIF1<0與平面SKIPIF1<0所成角,求出SKIPIF1<0的最大值,即可判斷D;【詳解】解:圓錐SKIPIF1<0的體積為SKIPIF1<0,故A正確,圓錐的母線長為SKIPIF1<0,所以圓錐的側(cè)面積為SKIPIF1<0,底面面積為SKIPIF1<0,故圓錐的表面積為SKIPIF1<0,故B錯(cuò)誤,當(dāng)SKIPIF1<0時(shí),三棱錐SKIPIF1<0的體積最大,此時(shí)為SKIPIF1<0,故C正確,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,顯然SKIPIF1<0底面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,連接SKIPIF1<0,∴SKIPIF1<0為直線SKIPIF1<0與平面SKIPIF1<0所成角,由SKIPIF1<0為定值,∴當(dāng)SKIPIF1<0時(shí)SKIPIF1<0與平面SKIPIF1<0所成角最大,此時(shí)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故D錯(cuò)誤.故選:AC6.(2022·廣東汕頭·二模)如圖,在正方體SKIPIF1<0中,點(diǎn)P在線段SKIPIF1<0上運(yùn)動(dòng),則(

)A.直線SKIPIF1<0平面SKIPIF1<0B.三棱錐SKIPIF1<0的體積為定值C.異面直線AP與SKIPIF1<0所成角的取值范圍是SKIPIF1<0D.直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的最大值為SKIPIF1<0【答案】AB【分析】建立空間直角坐標(biāo)系,利用空間向量垂直的坐標(biāo)表示公式、空間向量夾角公式、三棱錐的體積性質(zhì)逐一判斷即可.【詳解】建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,即SKIPIF1<0.A:SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以直線SKIPIF1<0平面SKIPIF1<0,因此本選項(xiàng)結(jié)論正確;B:側(cè)面SKIPIF1<0的對角線交點(diǎn)為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為定值,因此本選項(xiàng)結(jié)論正確;C:SKIPIF1<0,設(shè)異面直線AP與SKIPIF1<0所成角為SKIPIF1<0,則有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKI

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論