




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.三角形的內(nèi)心是()A.三條中線的交點 B.三條高的交點C.三邊的垂直平分線的交點 D.三條角平分線的交點2.在正方形、矩形、菱形、平行四邊形中,其中是中心對稱圖形的個數(shù)為()A. B. C. D.3.如圖,在⊙O中,點A、B、C在⊙O上,且∠ACB=110°,則∠α=()A.70° B.110° C.120° D.140°4.如圖,五邊形內(nèi)接于,若,則的度數(shù)是()A. B. C. D.5.如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為()A.30° B.40° C.45° D.50°6.如圖,已知在△ABC紙板中,AC=4,BC=8,AB=11,P是BC上一點,沿過點P的直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那么CP長的取值范圍是()A.0<CP≤1 B.0<CP≤2 C.1≤CP<8 D.2≤CP<87.對于二次函數(shù)的圖象,下列結(jié)論錯誤的是()A.頂點為原點 B.開口向上 C.除頂點外圖象都在軸上方 D.當時,有最大值8.順次連接四邊形ABCD各邊的中點,所得四邊形是()A.平行四邊形B.對角線互相垂直的四邊形C.矩形D.菱形9.已知拋物線y=ax2+bx+c(b>a>0)與x軸最多有一個交點,現(xiàn)有以下四個結(jié)論:①該拋物線的對稱軸在y軸左側(cè);②關(guān)于x的方程ax2+bx+c+2=0無實數(shù)根;③a﹣b+c≥0;④的最小值為1.其中,正確結(jié)論的個數(shù)為()A.1個 B.2個 C.1個 D.4個10.一個盒子中裝有2個藍球,3個紅球和若干個黃球,小明通過多次摸球試驗后發(fā)現(xiàn),摸取到黃球的頻率穩(wěn)定在0.5左右,則黃球有()個.A.4 B.5 C.6 D.10二、填空題(每小題3分,共24分)11.小強同學(xué)從,,,這四個數(shù)中任選一個數(shù),滿足不等式的概率是__________.12.已知點E是線段AB的黃金分割點,且,若AB=2則BE=__________.13.如圖,在菱形中,對角線交于點,過點作于點,已知BO=4,S菱形ABCD=24,則___.14.若一個正六邊形的周長為24,則該正六邊形的面積為▲.15.如果a,b,c,d是成比例線段,其中a=2cm,b=6cm,c=5cm,則線段d=_______cm.16.如圖,點是矩形的對角線上一點,正方形的頂點在邊上,則的值為__________.17.如圖,已知等邊△ABC的邊長為4,P是AB邊上的一個動點,連接CP,過點P作∠EPC=60°,交AC于點E,以PE為邊作等邊△EPD,頂點D在線段PC上,O是△EPD的外心,當點P從點A運動到點B的過程中,點O也隨之運動,則點O經(jīng)過的路徑長為_____.18.若點A(-2,a),B(1,b),C(4,c)都在反比例函數(shù)的圖象上,則a、b、c大小關(guān)系是________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,點B在x軸上,∠ABO=90°,AB=BO,直線y=﹣3x﹣4與反比例函數(shù)y=交于點A,交y軸于C點.(1)求k的值;(2)點D與點O關(guān)于AB對稱,連接AD、CD,證明△ACD是直角三角形;(3)在(2)的條件下,點E在反比例函數(shù)圖象上,若S△OCE=S△OCD,求點E的坐標.20.(6分)新建馬路需要在道路兩旁安裝路燈、種植樹苗.如圖,某道路一側(cè)路燈AB在兩棵同樣高度的樹苗CE和DF之間,樹苗高2m,兩棵樹苗之間的距離CD為16m,在路燈的照射下,樹苗CE的影長CG為1m,樹苗DF的影長DH為3m,點G、C、B、D、H在一條直線上.求路燈AB的高度.21.(6分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交AB、AC于點E、F,(1)求證:BC是⊙O切線;(2)設(shè)AB=m,AF=n,試用含m、n的代數(shù)式表示線段AD的長.22.(8分)如圖所示,在平面直角坐標系中,拋物線與軸相交于點,點,與軸相交于點,與拋物線的對稱軸相交于點.(1)求該拋物線的表達式,并直接寫出點的坐標;(2)過點作交拋物線于點,求點的坐標;(3)在(2)的條件下,點在射線上,若與相似,求點的坐標.23.(8分)我校數(shù)學(xué)社團成員想利用所學(xué)的知識測量某廣告牌的寬度(圖中線段MN的長).直線MN垂直于地面,垂足為點P,在地面A處測得點M的仰角為60°,點N的仰角為45°,在B處測得點M的仰角為30°,AB=5米.且A、B、P三點在一直線上,請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(結(jié)果保留根號)24.(8分)如圖,在△ABC中,∠CAB=90°,D是邊BC上一點,,E為線段AD的中點,連結(jié)CE并延長交AB于點F.(1)求證:AD⊥BC.(2)若AF:BF=1:3,求證:CD:DB=1:2.25.(10分)材料1:如圖1,昌平南環(huán)大橋是經(jīng)典的懸索橋,當今大跨度橋梁大多采用此種結(jié)構(gòu).此種橋梁各結(jié)構(gòu)的名稱如圖2所示,其建造原理是在兩邊高大的橋塔之間,懸掛著主索,再以相應(yīng)的間隔,從主索上設(shè)置豎直的吊索,與橋面垂直,并連接橋面承接橋面的重量,主索幾何形態(tài)近似符合拋物線.圖1圖2材料2:如圖3,某一同類型懸索橋,兩橋塔AD=BC=10m,間距AB為32m,橋面AB水平,主索最低點為點P,點P距離橋面為2m;圖3為了進行研究,甲、乙、丙三位同學(xué)分別以不同方式建立了平面直角坐標系,如下圖:甲同學(xué):以DC中點為原點,DC所在直線為x軸,建立平面直角坐標系;乙同學(xué):以AB中點為原點,AB所在直線為x軸,建立平面直角坐標系;丙同學(xué):以點P為原點,平行于AB的直線為x軸,建立平面直角坐標系.(1)請你選用其中一位同學(xué)建立的平面直角坐標系,寫出此種情況下點C的坐標,并求出主索拋物線的表達式;(2)距離點P水平距離為4m和8m處的吊索共四條需要更換,則四根吊索總長度為多少米?26.(10分)如圖,在四邊形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設(shè)運動時間為t秒(0<t<5).(1)求證:△ACD∽△BAC;(2)求DC的長;(3)試探究:△BEF可以為等腰三角形嗎?若能,求t的值;若不能,請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】根據(jù)三角形的內(nèi)心的定義解答即可.【詳解】解:因為三角形的內(nèi)心為三個內(nèi)角平分線的交點,故選:D.【點睛】此題主要考查了三角形內(nèi)切圓與內(nèi)心,解題的關(guān)鍵是要熟記內(nèi)心的定義和性質(zhì).2、D【解析】根據(jù)中心對稱圖形的定義:把一個圖形繞某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形可直接選出答案.【詳解】在正方形、矩形、菱形、平行四邊形中,其中都是中心對稱圖形,故共有個中心對稱圖形.故選D.【點睛】本題考查了中心對稱圖形,正確掌握中心對稱圖形的性質(zhì)是解題的關(guān)鍵.3、D【分析】作所對的圓周角∠ADB,如圖,利用圓內(nèi)接四邊形的性質(zhì)得∠ADB=70°,然后根據(jù)圓周角定理求解.【詳解】解:作所對的圓周角∠ADB,如圖,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半4、B【分析】利用圓內(nèi)接四邊形對角互補得到∠B+∠ADC=180°,∠E+∠ACD=180°,然后利用三角形內(nèi)角和求出∠ADC+∠ACD=180°-∠CAD,從而使問題得解.【詳解】解:由題意:∠B+∠ADC=180°,∠E+∠ACD=180°∴∠B+∠ADC+∠E+∠ACD=360°又∵∴∠ADC+∠ACD=180°-∠CAD=180°-35°=145°∴∠B+∠E+145°=360°∴∠B+∠E=故選:B【點睛】本題考查圓內(nèi)接四邊形對角互補和三角形內(nèi)角和定理,掌握性質(zhì)正確推理計算是本題的解題關(guān)鍵.5、B【解析】試題解析:在中,故選B.6、B【分析】分四種情況討論,依據(jù)相似三角形的對應(yīng)邊成比例,即可得到AP的長的取值范圍.【詳解】如圖所示,過P作PD∥AB交AC于D或PE∥AC交AB于E,則△PCD∽△BCA或△BPE∽△BCA,此時0<PC<8;如圖所示,過P作∠BPF=∠A交AB于F,則△BPF∽△BAC,此時0<PC<8;如圖所示,過P作∠CPG=∠B交AC于G,則△CPG∽△CAB,此時,△CPG∽△CBA,當點G與點A重合時,CA1=CP×CB,即41=CP×8,∴CP=1,∴此時,0<CP≤1;綜上所述,CP長的取值范圍是0<CP≤1.故選B.【點睛】本題主要考查了相似三角形的性質(zhì),解決本題的關(guān)鍵是要熟練掌握相似三角形的性質(zhì).7、D【分析】根據(jù)二次函數(shù)的性質(zhì)逐項判斷即可.【詳解】根據(jù)二次函數(shù)的性質(zhì),可得:二次函數(shù)頂點坐標為(0,0),開口向上,故除頂點外圖象都在x軸上方,故A、B、C正確;當x=0時,y有最小值為0,故D錯誤.故選:D.【點睛】本題考查二次函數(shù)的性質(zhì),熟練掌握二次函數(shù)頂點坐標,開口方向,最值與系數(shù)之間的關(guān)系是解題的關(guān)鍵.8、A【解析】試題分析:連接原四邊形的一條對角線,根據(jù)中位線定理,可得新四邊形的一組對邊平行且等于對角線的一半,即一組對邊平行且相等.則新四邊形是平行四邊形.解:如圖,根據(jù)中位線定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四邊形EFGH是平行四邊形.故選A.考點:中點四邊形.9、D【解析】本題考察二次函數(shù)的基本性質(zhì),一元二次方程根的判別式等知識點.【詳解】解:∵,∴拋物線的對稱軸<0,∴該拋物線的對稱軸在軸左側(cè),故①正確;∵拋物線與軸最多有一個交點,∴∴關(guān)于的方程中∴關(guān)于的方程無實數(shù)根,故②正確;∵拋物線與軸最多有一個交點,∴當時,≥0正確,故③正確;當時,,故④正確.故選D.【點睛】本題的解題關(guān)鍵是熟悉函數(shù)的系數(shù)之間的關(guān)系,二次函數(shù)和一元二次方程的關(guān)系,難點是第四問的證明,要考慮到不等式的轉(zhuǎn)化.10、B【分析】設(shè)黃球有x個,根據(jù)用頻率估計概率和概率公式列方程即可.【詳解】設(shè)黃球有x個,根據(jù)題意得:=0.5,解得:x=5,答:黃球有5個;故選:B.【點睛】此題考查的是用頻率估計概率和根據(jù)概率求球的數(shù)量問題,掌握用頻率估計概率和概率公式是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】找到滿足不等式x+1<2的結(jié)果數(shù),再根據(jù)概率公式計算可得.【詳解】解:在0,1,2,3這四個數(shù)中,滿足不等式x+1<2的中只有0一個數(shù),
所以滿足不等式x+1<2的概率是.故答案是:.【點睛】本題主要考查概率公式,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.12、【分析】把一條線段分成兩部分,使其中較長的線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,他們的比值叫做黃金比;【詳解】解:∵點E是線段AB的黃金分割點,且BE>AE,∴BE=AB,而AB=2,∴BE=;故答案為:;【點睛】本題主要考查了黃金分割,掌握黃金分割是解題的關(guān)鍵.13、【分析】根據(jù)菱形面積=對角線積的一半可求,再根據(jù)勾股定理求出,然后由菱形的面積即可得出結(jié)果.【詳解】∵四邊形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案為.【點睛】本題考查了菱形的性質(zhì)、勾股定理以及菱形面積公式.熟練掌握菱形的性質(zhì),由勾股定理求出是解題的關(guān)鍵.14、【解析】根據(jù)題意畫出圖形,如圖,連接OB,OC,過O作OM⊥BC于M,∴∠BOC=×360°=60°.∵OB=OC,∴△OBC是等邊三角形.∴∠OBC=60°.∵正六邊形ABCDEF的周長為21,∴BC=21÷6=1.∴OB=BC=1,∴BM=OB·sin∠OBC=1·.∴.15、15【分析】根據(jù)比例線段的定義即可求解.【詳解】由題意得:將a,b,c的值代入得:解得:(cm)故答案為:15.【點睛】本題考查了比例線段的定義,掌握比例線段的定義及其基本性質(zhì)是解題關(guān)鍵.16、【分析】先證明△AHE∽△CBA,得到HE與AH的倍數(shù)關(guān)系,則可知GF與AG的倍數(shù)關(guān)系,從而求解tan∠GAF的值.【詳解】∵四邊形是正方形,∴,∵∠AHE=∠ABC=90°,∠HAE=∠BCA,
∴△AHE∽△CBA,∴,即,設(shè),則A,
∴,
∴.故答案為:.【點睛】本題主要考查相似三角形的判定和性質(zhì)、正方形、矩形的性質(zhì)、解直角三角形.利用參數(shù)求解是解答本題的關(guān)鍵.17、【分析】根據(jù)等邊三角形的外心性質(zhì),根據(jù)特殊角的三角函數(shù)即可求解.【詳解】解:如圖,作BG⊥AC、CF⊥AB于點G、F,交于點I,則點I是等邊三角形ABC的外心,∵等邊三角形ABC的邊長為4,∴AF=BF=2∠IAF=30°∴AI=∵點P是AB邊上的一個動點,O是等邊三角形△EPD的外心,∴當點P從點A運動到點B的過程中,點O也隨之運動,點O的經(jīng)過的路徑長是AI的長,∴點O的經(jīng)過的路徑長是.故答案為:.【點睛】本題考查等邊三角形的外心性質(zhì),關(guān)鍵在于熟悉性質(zhì),結(jié)合圖形計算.18、a>c>b【分析】根據(jù)題意,分別求出a、b、c的值,然后進行判斷,即可得到答案.【詳解】解:∵點A、B、C都在反比例函數(shù)的圖象上,則當時,則;當時,則;當時,則;∴;故答案為:.【點睛】本題考查的是反比例函數(shù)圖象上點的坐標特點,熟知反比例函數(shù)圖象上各點的坐標一定適合此函數(shù)的解析式是解答此題的關(guān)鍵.三、解答題(共66分)19、(1)-4;(2)見解析;(3)點E的坐標為(﹣4,1).【分析】(1)根據(jù)一次函數(shù)圖象上點的坐標特征求出點A的坐標,利用待定系數(shù)法求出k;
(2)先求出點D的坐標,求出∠ADB=45°,∠ODC=45°,從而得解;
(3)設(shè)出點E的坐標,根據(jù)三角形的面積公式解答.【詳解】(1)設(shè)點B的坐標為(a,0),∵∠ABO=90°,AB=BO,∴點A的坐標為(a,﹣a),∵點A在直線y=﹣3x﹣4上,∴﹣a=﹣3a﹣4,解得,a=﹣2,即點A的坐標為(﹣2,2),∵點A在反比例函數(shù)y=上,∴k=﹣4;(2)∵點D與點O關(guān)于AB對稱,∴點D的坐標為(﹣4,0)∴OD=4,∴DB=BA=2,則∠ADB=45°,∵直線y=﹣3x﹣4交y軸于C點,∴點C的坐標為(0,﹣4),∴OD=OC,∴∠ODC=45°,∴∠ADC=∠ADB+∠ODC=90°,即△ACD是直角三角形;(3)設(shè)點E的坐標為(m,﹣),∵S△OCE=S△OCD,∴×4×4=×4×(﹣m),解得,m=﹣4,∴﹣=1,∴點E的坐標為(﹣4,1).【點睛】本題考查的是反比例函數(shù)與幾何的綜合題,掌握待定系數(shù)法求反比例函數(shù)解析式是解題的關(guān)鍵.20、10m【分析】設(shè)BC的長度為x,根據(jù)題意得出△GCE∽△GBA,△HDF∽△HBA,進而利用相似三角形的性質(zhì)列出關(guān)于x的方程.【詳解】解:設(shè)BC的長度為xm由題意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路燈AB的高度為10m.【點睛】此題主要考查了相似三角形的應(yīng)用,得出△GCE∽△GBA,△HDF∽△HBA是解題關(guān)鍵.21、(1)見解析;(2)【分析】(1)連接OD,由AD為角平分線得到∠BAD=∠CAD,再由等邊對等角得到∠OAD=∠ODA,等量代換得到∠ODA=∠CAD,進而得到OD∥AC,得到OD與BC垂直,即可得證;
(2)連接DF,由(1)得到BC為圓O的切線,結(jié)合角度的運算得出∠CDF=∠DAF,進而得到∠AFD=∠ADB,結(jié)合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【詳解】(1)證明:如圖,連接OD,則OD為圓O的半徑,∵AD平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC=∠C=90°即OD⊥BC,∴BC是⊙O切線.(2)連接DF,OF,由(1)知BC為圓O的切線,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF,∵OD=OF,∴∠ODF=∠OFD=,又∵∠DAF=,∴∠ODF=∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,∴,則∵AB=m,AF=n,∴∴【點睛】此題屬于圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.22、(1),點;(2)點;(3)或【解析】(1)設(shè)拋物線的表達式為,將A、B、C三點坐標代入表達式,解出a、b、c的值即可得到拋物線表達式,同理采用待定系數(shù)法求出直線BC解析式,即可求出與對稱軸的交點坐標;(2)過點E作EH⊥AB,垂足為H.先證∠EAH=∠ACO,則tan∠EAH=tan∠ACO=,設(shè)EH=t,則AH=2t,從而可得到E(-2+2t,t),最后,將點E的坐標代入拋物線的解析式求解即可;(3)先證明,再根據(jù)與相似分兩種情況討論,建立方程求出AF,利用三角函數(shù)即可求出F點的坐標.【詳解】(1)設(shè)拋物線的表達式為.把,和代入得,解得,拋物線的表達式,∴拋物線對稱軸為設(shè)直線BC解析式為,把和代入得,解得∴直線BC解析式為當時,點.(2)如圖,過點E作EH⊥AB,垂足為H.∵∠EAB+∠BAC=90°,∠BAC+∠ACO=90°,∴∠EAH=∠ACO.∴tan∠EAH=tan∠ACO=.設(shè)EH=t,則AH=2t,∴點E的坐標為(?2+2t,t).將(?2+2t,t)代入拋物線的解析式得:12(?2+2t)2?(?2+2t)?4=t,解得:t=或t=0(舍去)∴(3)如圖所示,,.,,.由(2)中tan∠EAH=tan∠ACO可知,.和相似,分兩種情況討論:①,即,,∵tan∠EAB=∴sin∠EAB=∴F點的縱坐標=點.②,即,,同①可得F點縱坐標=橫坐標=點.綜合①②,點或.【點睛】本題考查二次函數(shù)的綜合問題,需要熟練掌握待定系數(shù)法求函數(shù)解析式,熟練運用三角函數(shù)與相似三角形的性質(zhì),作出圖形,數(shù)形結(jié)合是解題的關(guān)鍵.23、米【分析】設(shè)AP=NP=x,在Rt△APM中可以求出MP=x,在Rt△BPM中,∠MBP=30°,求得x,利用MN=MP-NP即可求得答案.【詳解】解:∵在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,設(shè)PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=x,在Rt△BPM中,tan∠MBP=,∵∠MBP=30°,AB=5,∴=,∴x=,∴MN=MP-NP=x-x=.答:廣告牌的寬MN的長為米.【點睛】本題考查解直角三角形在實際問題中的應(yīng)用,將實際問題抽象為數(shù)學(xué)問題,選用適當?shù)匿J角三角函數(shù)解直角三角形是解題的關(guān)鍵,屬于中考的必考點.24、(1)見解析;(2)見解析.【分析】(1)由等積式轉(zhuǎn)化為比例式,再由相似三角形的判定定理,證明△ABD∽CBA,從而得出∠ADB=∠CAB=90°;(2)過點D作DG∥AB交CF于點G,由E為AD的中點,可得△DGE≌△AFE,得出AF=DG,再由平行線分線段成比例可得出結(jié)果.【詳解】證明:(1)∵AB2=BD·BC,∴又∠B=∠B,∴△ABD∽CBA,∴∠ADB=∠CAB=90°,∴AD⊥BC.(2)過點D作DG∥AB交CF于點G,∵E為AD的中點,∴易得△DGE≌△AFE,∴AF=DG,又AF:BF=1:3,∴DG:BF=1:3.∵DG∥BF,∴DG:BF=CD:BC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北交通職業(yè)技術(shù)學(xué)院《民族與文化地理》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶五一職業(yè)技術(shù)學(xué)院《臨床微生物學(xué)檢驗(一)》2023-2024學(xué)年第二學(xué)期期末試卷
- 懷化學(xué)院《文化哲學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 涿鹿縣2024-2025學(xué)年三年級數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析
- 綿陽市江油市2025屆數(shù)學(xué)四年級第二學(xué)期期末調(diào)研模擬試題含解析
- 湖南省瀏陽市瀏陽河中學(xué)2024-2025學(xué)年初三年級模擬考試(一)語文試題含解析
- 上海市閔行區(qū)24校聯(lián)考2025屆初三下學(xué)期期中練習(xí)化學(xué)試題試卷含解析
- 新鄉(xiāng)醫(yī)學(xué)院《鑄造工藝與裝備》2023-2024學(xué)年第二學(xué)期期末試卷
- 采購合同履行合同管理標準更新重點基礎(chǔ)知識點
- 2025年工人個人工作總結(jié)范文(12篇)
- 婚禮執(zhí)事單模板
- 《紅色旅游線路設(shè)計》
- 設(shè)備出廠檢驗報告
- EXCEL公式進行經(jīng)緯度與XY坐標的相互轉(zhuǎn)換
- 紫銅材質(zhì)證明
- 妊娠期甲狀腺疾病課件
- 導(dǎo)線的連接精品課件
- 論提高行政效率的途徑 開題報告
- 059.商業(yè)計劃書和可行性報告精制食油廠年產(chǎn)萬噸精制山茶油項目可行性研究報告
- 米度盾構(gòu)導(dǎo)向系統(tǒng)
- [說明]心血管內(nèi)科(心內(nèi)科)_見習(xí)教案_6_動脈粥樣硬化和冠狀動脈粥樣硬化性心臟病
評論
0/150
提交評論