版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)的大致圖像為()A. B.C. D.2.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.3.公元前世紀(jì),古希臘哲學(xué)家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面米處開(kāi)始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜?shù)谋?當(dāng)比賽開(kāi)始后,若阿基里斯跑了米,此時(shí)烏龜便領(lǐng)先他米,當(dāng)阿基里斯跑完下一個(gè)米時(shí),烏龜先他米,當(dāng)阿基里斯跑完下-個(gè)米時(shí),烏龜先他米....所以,阿基里斯永遠(yuǎn)追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜?shù)木嚯x恰好為米時(shí),烏龜爬行的總距離為()A.米 B.米C.米 D.米4.若時(shí),,則的取值范圍為()A. B. C. D.5.已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于,兩點(diǎn)(設(shè)點(diǎn)位于第一象限),過(guò)點(diǎn),分別作拋物線的準(zhǔn)線的垂線,垂足分別為點(diǎn),,拋物線的準(zhǔn)線交軸于點(diǎn),若,則直線的斜率為A.1 B. C. D.6.若單位向量,夾角為,,且,則實(shí)數(shù)()A.-1 B.2 C.0或-1 D.2或-17.某幾何體的三視圖如圖所示,三視圖是腰長(zhǎng)為1的等腰直角三角形和邊長(zhǎng)為1的正方形,則該幾何體中最長(zhǎng)的棱長(zhǎng)為().A. B. C.1 D.8.平行四邊形中,已知,,點(diǎn)、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.函數(shù)的圖象的大致形狀是()A. B. C. D.10.設(shè)平面與平面相交于直線,直線在平面內(nèi),直線在平面內(nèi),且則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分不必要條件11.已知當(dāng),,時(shí),,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定12.命題“”的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,內(nèi)角所對(duì)的邊分別是.若,,則__,面積的最大值為_(kāi)__.14.在矩形中,,為的中點(diǎn),將和分別沿,翻折,使點(diǎn)與重合于點(diǎn).若,則三棱錐的外接球的表面積為_(kāi)____.15.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________16.設(shè)函數(shù),則______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知正數(shù)x,y,z滿足xyzt(t為常數(shù)),且的最小值為,求實(shí)數(shù)t的值.18.(12分)己知點(diǎn),分別是橢圓的上頂點(diǎn)和左焦點(diǎn),若與圓相切于點(diǎn),且點(diǎn)是線段靠近點(diǎn)的三等分點(diǎn).求橢圓的標(biāo)準(zhǔn)方程;直線與橢圓只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過(guò)坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于,兩點(diǎn),求面積的取值范圍.19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上不同兩點(diǎn),如果在曲線上存在點(diǎn),使得①;②曲線在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線”請(qǐng)說(shuō)明理由20.(12分)有甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司底薪元,送餐員每單制成元;乙公司無(wú)底薪,單以內(nèi)(含單)的部分送餐員每單抽成元,超過(guò)單的部分送餐員每單抽成元.現(xiàn)從這兩家公司各隨機(jī)選取一名送餐員,分別記錄其天的送餐單數(shù),得到如下頻數(shù)分布表:送餐單數(shù)3839404142甲公司天數(shù)101015105乙公司天數(shù)101510105(1)從記錄甲公司的天送餐單數(shù)中隨機(jī)抽取天,求這天的送餐單數(shù)都不小于單的概率;(2)假設(shè)同一公司的送餐員一天的送餐單數(shù)相同,將頻率視為概率,回答下列兩個(gè)問(wèn)題:①求乙公司送餐員日工資的分布列和數(shù)學(xué)期望;②小張打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,小張應(yīng)選擇哪家公司應(yīng)聘?說(shuō)明你的理由.21.(12分)在以為頂點(diǎn)的五面體中,底面為菱形,,,,二面角為直二面角.(Ⅰ)證明:;(Ⅱ)求二面角的余弦值.22.(10分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點(diǎn).(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
通過(guò)取特殊值逐項(xiàng)排除即可得到正確結(jié)果.【詳解】函數(shù)的定義域?yàn)?,?dāng)時(shí),,排除B和C;當(dāng)時(shí),,排除A.故選:D.【點(diǎn)睛】本題考查圖象的判斷,取特殊值排除選項(xiàng)是基本手段,屬中檔題.2.A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡(jiǎn)得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.3.D【解析】
根據(jù)題意,是一個(gè)等比數(shù)列模型,設(shè),由,解得,再求和.【詳解】根據(jù)題意,這是一個(gè)等比數(shù)列模型,設(shè),所以,解得,所以.故選:D【點(diǎn)睛】本題主要考查等比數(shù)列的實(shí)際應(yīng)用,還考查了建模解模的能力,屬于中檔題.4.D【解析】
由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問(wèn)題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問(wèn)題,可采用參變量分離法去求解.5.C【解析】
根據(jù)拋物線定義,可得,,又,所以,所以,設(shè),則,則,所以,所以直線的斜率.故選C.6.D【解析】
利用向量模的運(yùn)算列方程,結(jié)合向量數(shù)量積的運(yùn)算,求得實(shí)數(shù)的值.【詳解】由于,所以,即,,即,解得或.故選:D【點(diǎn)睛】本小題主要考查向量模的運(yùn)算,考查向量數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.7.B【解析】
首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長(zhǎng).【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長(zhǎng)的棱長(zhǎng)為.故選:B.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.8.C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點(diǎn)睛】本題考查向量的幾何意義,考查向量的線性運(yùn)算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.9.B【解析】
根據(jù)函數(shù)奇偶性,可排除D;求得及,由導(dǎo)函數(shù)符號(hào)可判斷在上單調(diào)遞增,即可排除AC選項(xiàng).【詳解】函數(shù)易知為奇函數(shù),故排除D.又,易知當(dāng)時(shí),;又當(dāng)時(shí),,故在上單調(diào)遞增,所以,綜上,時(shí),,即單調(diào)遞增.又為奇函數(shù),所以在上單調(diào)遞增,故排除A,C.故選:B【點(diǎn)睛】本題考查了根據(jù)函數(shù)解析式判斷函數(shù)圖象,導(dǎo)函數(shù)性質(zhì)與函數(shù)圖象關(guān)系,屬于中檔題.10.A【解析】
試題分析:α⊥β,b⊥m又直線a在平面α內(nèi),所以a⊥b,但直線不一定相交,所以“α⊥β”是“a⊥b”的充分不必要條件,故選A.考點(diǎn):充分條件、必要條件.11.C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時(shí),根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.12.D【解析】
根據(jù)全稱命題的否定是特稱命題,對(duì)命題進(jìn)行改寫即可.【詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【點(diǎn)睛】本題考查全稱命題的否定,難度容易.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
由正弦定理,結(jié)合,,可求出;由三角形面積公式以及角A的范圍,即可求出面積的最大值.【詳解】因?yàn)?,所以由正弦定理可得,所?所以,當(dāng),即時(shí),三角形面積最大.故答案為(1).1(2).【點(diǎn)睛】本題主要考查解三角形的問(wèn)題,熟記正弦定理以及三角形面積公式即可求解,屬于基礎(chǔ)題型.14..【解析】
計(jì)算外接圓的半徑,并假設(shè)外接球的半徑為R,可得球心在過(guò)外接圓圓心且垂直圓面的垂線上,然后根據(jù)面,即可得解.【詳解】由題意可知,,所以可得面,設(shè)外接圓的半徑為,由正弦定理可得,即,,設(shè)三棱錐外接球的半徑,因?yàn)橥饨忧虻那蛐臑檫^(guò)底面圓心垂直于底面的直線與中截面的交點(diǎn),則,所以外接球的表面積為.故答案為:.【點(diǎn)睛】本題考查三棱錐的外接球的應(yīng)用,屬于中檔題.15.【解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱軸在1的右邊,且,求解出即滿足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱軸要滿足并且,即,解得.【點(diǎn)睛】本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.16.【解析】
由自變量所在定義域范圍,代入對(duì)應(yīng)解析式,再由對(duì)數(shù)加減法運(yùn)算法則與對(duì)數(shù)恒等式關(guān)系分別求值再相加,即為答案.【詳解】因?yàn)楹瘮?shù),則因?yàn)?,則故故答案為:【點(diǎn)睛】本題考查分段函數(shù)求值,屬于簡(jiǎn)單題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.t=1【解析】
把變形為結(jié)合基本不等式進(jìn)行求解.【詳解】因?yàn)榧?,?dāng)且僅當(dāng),,時(shí),上述等號(hào)成立,所以,即,又x,y,z>0,所以xyzt=1.【點(diǎn)睛】本題主要考查基本不等式的應(yīng)用,利用基本不等式求解最值時(shí)要注意轉(zhuǎn)化為適用形式,同時(shí)要關(guān)注不等號(hào)是否成立,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).18.;.【解析】
連接,由三角形相似得,,進(jìn)而得出,,寫出橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),,解得,,因?yàn)辄c(diǎn)在第二象限,所以,,所以,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,求出面積的取值范圍.【詳解】解:連接,由可得,,,橢圓的標(biāo)準(zhǔn)方程;由得,,因?yàn)橹本€與橢圓相切于點(diǎn),所以,即,解得,,即點(diǎn)的坐標(biāo)為,因?yàn)辄c(diǎn)在第二象限,所以,,所以,所以點(diǎn)的坐標(biāo)為,設(shè)直線與垂直交于點(diǎn),則是點(diǎn)到直線的距離,設(shè)直線的方程為,則,當(dāng)且僅當(dāng),即時(shí),有最大值,所以,即面積的取值范圍為.【點(diǎn)睛】本題考查直線和橢圓位置關(guān)系的應(yīng)用,利用基本不等式,屬于難題.19.(1)見(jiàn)解析(2)不存在,見(jiàn)解析【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問(wèn)題,即可說(shuō)明.【詳解】(1)函數(shù)的定義域?yàn)?,所以?dāng)時(shí),;,所以函數(shù)在上單調(diào)遞增當(dāng)時(shí),①當(dāng)時(shí),函數(shù)在上遞增②,顯然無(wú)增區(qū)間;③當(dāng)時(shí),,函數(shù)在上遞增,綜上當(dāng)函數(shù)在上單調(diào)遞增.當(dāng)時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí)函數(shù)無(wú)單調(diào)遞增區(qū)間當(dāng)時(shí)函數(shù)在上單調(diào)遞增(2)假設(shè)函數(shù)存在“中值相依切線”設(shè)是曲線上不同的兩個(gè)點(diǎn),且則曲線在點(diǎn)處的切線的斜率為,.令,則,單調(diào)遞增,,故無(wú)解,假設(shè)不成立綜上,假設(shè)不成立,所以不存在“中值相依切線”【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)的應(yīng)用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.20.(1);(2)①分布列見(jiàn)解析,;②小張應(yīng)選擇甲公司應(yīng)聘.【解析】
(1)記抽取的3天送餐單數(shù)都不小于40為事件,可得(A)的值.(2)①設(shè)乙公司送餐員送餐單數(shù)為,可得當(dāng)時(shí),,以此類推可得:當(dāng)時(shí),當(dāng)時(shí),的值.當(dāng)時(shí),的值,同理可得:當(dāng)時(shí),.的所有可能取值.可得的分布列及其數(shù)學(xué)期望.②依題意,甲公司送餐員日平均送餐單數(shù).可得甲公司送餐員日平均工資,與乙數(shù)學(xué)期望比較即可得出.【詳解】解:(1)由表知,50天送餐單數(shù)中有30天的送餐單數(shù)不小于40單,記抽取的3天送餐單數(shù)都不小于40為事件,則.(2)①設(shè)乙公司送餐員的送餐單數(shù)為,日工資為元,則當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.所以的分布列為228234240247254.②依題意,甲公司送餐員的日平均送餐單數(shù)為,所以甲公司送餐員的日平均工資為元,因?yàn)椋孕垜?yīng)選擇甲公司應(yīng)聘.【點(diǎn)睛】本題考查了隨機(jī)變量的分布列與數(shù)學(xué)期望、古典概率計(jì)算公式、組合計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.21.(Ⅰ)見(jiàn)解析(Ⅱ)【解析】
(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié),證明平面得到答案.(Ⅱ)分別以為軸建立如圖所示的空間直角坐標(biāo)系,平面的法向量為,平面的法向量為,計(jì)算夾角得到答案.【詳解】(Ⅰ)連接交于點(diǎn),取中點(diǎn),連結(jié)因?yàn)闉榱庑危?因?yàn)?,所?因?yàn)槎娼菫橹倍娼?,所以平面平面,且平面平面,所以平面所以因?yàn)樗允瞧叫兴倪呅?,所?所以,所以,所以平面,又平面,所以.(Ⅱ)由(Ⅰ)可知兩兩垂直,分別以為軸建立如圖所示的空間直角坐標(biāo)系.設(shè)設(shè)平面的法向量為,由,取.平面的法向量為.所以二面角余弦值為.【點(diǎn)睛】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.22.(1)證明見(jiàn)解析;(2)【解析】
(1)取的中點(diǎn),連接,易得,進(jìn)而可證明四邊形為平行四邊形,即,從而可證明平面;(2)取中點(diǎn),中點(diǎn),連接,易證平面,平面,從而可知兩兩垂直,以點(diǎn)為坐標(biāo)原點(diǎn),向量的方向分別為軸正方向建立如圖所示空間
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年鶴崗貨運(yùn)從業(yè)資格考試題
- 2025年北京貨運(yùn)從業(yè)資格證考試題技巧
- 2025年潮州貨運(yùn)資格證考試有哪些項(xiàng)目
- 《G蛋白耦聯(lián)受體》課件
- 地下商場(chǎng)非開(kāi)挖擴(kuò)建協(xié)議
- 鐵路工程預(yù)算員招聘協(xié)議樣本
- 制藥工廠租賃合同樣本
- 美發(fā)衛(wèi)生操作規(guī)范
- 臨時(shí)策劃師聘用合同范本
- 智能家居CEO聘用協(xié)議
- 籃球裁判手勢(shì)圖解匯總
- 共有因子評(píng)價(jià)問(wèn)答表
- cmmi3過(guò)程域直接證據(jù)
- 初三數(shù)學(xué)中考模擬試卷共八套
- 經(jīng)典繪本推薦--《果果的花朵》
- 蛋白質(zhì)分選與膜泡運(yùn)輸
- 彈簧設(shè)計(jì)公差標(biāo)準(zhǔn)
- X62W萬(wàn)能銑床電氣控制
- 常用普通螺紋加工的中徑和頂徑極限偏差快速查詢表
- 質(zhì)量認(rèn)證基礎(chǔ)知識(shí)(共218頁(yè)).ppt
- ACOG指南:妊娠期高血壓疾病指南(專家解讀)
評(píng)論
0/150
提交評(píng)論