版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.2.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)3.已知函數為奇函數,則()A. B.1 C.2 D.34.設復數滿足(為虛數單位),則復數的共軛復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業(yè)余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.6.已知,函數,若函數恰有三個零點,則()A. B.C. D.7.函數f(x)=2x-3A.[32C.[328.已知,,則()A. B. C. D.9.的展開式中的常數項為()A.-60 B.240 C.-80 D.18010.設是等差數列的前n項和,且,則()A. B. C.1 D.211.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或12.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點移動至點,且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,直線與圓交于兩點,,若,則弦的長度的最大值為___________.14.已知全集為R,集合,則___________.15.已知是夾角為的兩個單位向量,若,,則與的夾角為______.16.若方程有兩個不等實根,則實數的取值范圍是_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足bcosA﹣asinB=1.(1)求A;(2)已知a=2,B=,求△ABC的面積.18.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數方程;(Ⅱ)求曲線的內接矩形的周長的最大值.19.(12分)已知點、分別在軸、軸上運動,,.(1)求點的軌跡的方程;(2)過點且斜率存在的直線與曲線交于、兩點,,求的取值范圍.20.(12分)已知,.(1)當時,證明:;(2)設直線是函數在點處的切線,若直線也與相切,求正整數的值.21.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.22.(10分)已知函數.(1)解不等式:;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為02.C【解析】
先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.3.B【解析】
根據整體的奇偶性和部分的奇偶性,判斷出的值.【詳解】依題意是奇函數.而為奇函數,為偶函數,所以為偶函數,故,也即,化簡得,所以.故選:B【點睛】本小題主要考查根據函數的奇偶性求參數值,屬于基礎題.4.D【解析】
先把變形為,然后利用復數代數形式的乘除運算化簡,求出,得到其坐標可得答案.【詳解】解:由,得,所以,其在復平面內對應的點為,在第四象限故選:D【點睛】此題考查了復數代數形式的乘除運算,考查了復數的代數表示法及其幾何意義,屬于基礎題.5.A【解析】
由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.6.C【解析】
當時,最多一個零點;當時,,利用導數研究函數的單調性,根據單調性畫函數草圖,根據草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數遞增,令得,,函數遞減;函數最多有2個零點;根據題意函數恰有3個零點函數在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.【點睛】遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數,故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.7.A【解析】
根據冪函數的定義域與分母不為零列不等式組求解即可.【詳解】因為函數y=2x-3解得x≥32且∴函數f(x)=2x-3+1【點睛】定義域的三種類型及求法:(1)已知函數的解析式,則構造使解析式有意義的不等式(組)求解;(2)對實際問題:由實際意義及使解析式有意義構成的不等式(組)求解;(3)若已知函數fx的定義域為a,b,則函數fgx8.D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.9.D【解析】
求的展開式中的常數項,可轉化為求展開式中的常數項和項,再求和即可得出答案.【詳解】由題意,中常數項為,中項為,所以的展開式中的常數項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.10.C【解析】
利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.11.C【解析】
先根據弦長求出直線的斜率,再利用拋物線定義可求出.【詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯(lián)立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【點睛】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現(xiàn)了到焦點的距離時,一般考慮拋物線的定義.12.A【解析】
將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應在棱柱上下底面三角形的外心連線上,在中,計算半徑即可.【詳解】由,,可知平面.將三棱錐補形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點睛】本題考查了三棱錐外接球的表面積,考查了學生空間想象,邏輯推理,綜合分析,數學運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取的中點為M,由可得,可得M在上,當最小時,弦的長才最大.【詳解】設為的中點,,即,即,,.設,則,得.所以,.故答案為:【點睛】本題考查直線與圓的位置關系的綜合應用,考查學生的邏輯推理、數形結合的思想,是一道有一定難度的題.14.【解析】
先化簡集合A,再求A∪B得解.【詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【點睛】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.15.【解析】
依題意可得,再根據求模,求數量積,最后根據夾角公式計算可得;【詳解】解:因為是夾角為的兩個單位向量所以,又,所以,,所以,因為所以;故答案為:【點睛】本題考查平面向量的數量積的運算律,以及夾角的計算,屬于基礎題.16.【解析】
由知x>0,故.令,則.當時,;當時,.所以在(0,e)上遞增,在(e,+)上遞減.故,即.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】
(1)由正弦定理化簡已知等式可得sinBcosA﹣sinAsinB=1,結合sinB>1,可求tanA=,結合范圍A∈(1,π),可得A的值;(2)由已知可求C=,可求b的值,根據三角形的面積公式即可計算得解.【詳解】(1)∵bcosA﹣asinB=1.∴由正弦定理可得:sinBcosA﹣sinAsinB=1,∵sinB>1,∴cosA=sinA,∴tanA=,∵A∈(1,π),∴A=;(2)∵a=2,B=,A=,∴C=,根據正弦定理得到∴b=6,∴S△ABC=ab==6.【點睛】本題主要考查了正弦定理,三角形的面積公式在解三角形中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.18.(Ⅰ)曲線的參數方程為:(為參數);的極坐標方程為;(Ⅱ)16.【解析】
(
I
)直接利用轉換關系,把參數方程、極坐標方程和直角坐標方程之間進行轉換;(
II
)利用三角函數關系式的恒等變換和正弦型函數的性質的應用,即可求出結果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數方程為(為參數),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設橢圓的內接矩形的頂點為,,,,所以橢圓的內接矩形的周長為:,所以當時,即時,橢圓的內接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數方程,極坐標方程與普通方程間的互化,三角函數關系式的恒等變換,正弦型函數的性質的應用,極徑的應用,考查學生的求解運算能力和轉化能力,屬于基礎題型.19.(1)(2)【解析】
(1)設坐標后根據向量的坐標運算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標表示出,得到,所以,代入韋達定理即可求解.【詳解】(1)設,,則,設,由得.又由于,化簡得的軌跡的方程為.(2)設直線的方程為,與的方程聯(lián)立,消去得,,設,,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.【點睛】此題考查軌跡問題,橢圓和直線相交,注意坐標表示向量進行轉化的處理技巧,屬于較難題目.20.(1)證明見解析;(2).【解析】
(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據,轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數可知,,所以,,令,則,當時,為單調遞增函數,且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數,,所以;因為為單調遞增函數,且,因此;因為為整數,且,所以.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.21.(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯(lián)立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版凱悅酒店消防應急疏散預案編制合同3篇
- 2025退休返聘人員聘用合同書
- 二零二五年度房地產訂購與社區(qū)公共設施建設合同3篇
- 2025年度安徽省裝配式建筑構件制造與施工合同
- 二零二五年度房地產開發(fā)公司法律風險防控合同范本3篇
- 二零二五年度房產抵押權抵押權轉讓合同范本3篇
- 二零二五年度建筑施工勞務與工程驗收標準合同范本3篇
- 感恩助力成長青春夢想翱翔
- 思考點燃青春夢
- 二零二五年度國際貿易欺詐預防與供應鏈管理合同3篇
- 中國中樞神經系統(tǒng)膠質瘤診斷和治療指南
- 中考語文文學文本類閱讀復習專題課件:表現(xiàn)手法分析之襯托、對比與抑揚
- 2023年海峽出版發(fā)行集團有限責任公司招聘筆試題庫及答案解析
- 臺大公開課歐麗娟紅樓夢講義
- 【合同范本】補充協(xié)議-面積差補款-預售版
- 藝術(音樂、美術)專業(yè)人才需求情況調研報告
- [QC成果]提高剪力墻施工質量一次合格率
- 移印工作業(yè)指導書
- 樂高基礎篇樂高積木和搭建種類專題培訓課件
- 事故形成的冰山理論
- 溶解度曲線教學設計
評論
0/150
提交評論