版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一場考試需要2小時,在這場考試中鐘表的時針轉(zhuǎn)過的弧度數(shù)為()A. B. C. D.2.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.3.設(shè),則關(guān)于的方程所表示的曲線是()A.長軸在軸上的橢圓 B.長軸在軸上的橢圓C.實軸在軸上的雙曲線 D.實軸在軸上的雙曲線4.已知,則的大小關(guān)系是()A. B. C. D.5.已知整數(shù)滿足,記點的坐標(biāo)為,則點滿足的概率為()A. B. C. D.6.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且7.對于函數(shù),定義滿足的實數(shù)為的不動點,設(shè),其中且,若有且僅有一個不動點,則的取值范圍是()A.或 B.C.或 D.8.公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為()(參考數(shù)據(jù):)A.48 B.36 C.24 D.129.已知,則下列不等式正確的是()A. B.C. D.10.圓心為且和軸相切的圓的方程是()A. B.C. D.11.已知,滿足條件(為常數(shù)),若目標(biāo)函數(shù)的最大值為9,則()A. B. C. D.12.已知三棱錐中,為的中點,平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點,若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數(shù)列,為其前n項和,若,,則_______.14.已知集合,若,且,則實數(shù)所有的可能取值構(gòu)成的集合是________.15.函數(shù)的極大值為______.16.已知(為虛數(shù)單位),則復(fù)數(shù)________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.18.(12分)近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:x13412y51.522.58y與x可用回歸方程(其中,為常數(shù))進行模擬.(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)11天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;(ⅱ)求這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)參考數(shù)據(jù)與公式:設(shè),則0.541.81.530.45線性回歸直線中,,.19.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.20.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點分別為,,點,求的值.21.(12分)已知均為正實數(shù),函數(shù)的最小值為.證明:(1);(2).22.(10分)已知函數(shù).(Ⅰ)當(dāng)時,求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
因為時針經(jīng)過2小時相當(dāng)于轉(zhuǎn)了一圈的,且按順時針轉(zhuǎn)所形成的角為負(fù)角,綜合以上即可得到本題答案.【詳解】因為時針旋轉(zhuǎn)一周為12小時,轉(zhuǎn)過的角度為,按順時針轉(zhuǎn)所形成的角為負(fù)角,所以經(jīng)過2小時,時針?biāo)D(zhuǎn)過的弧度數(shù)為.故選:B【點睛】本題主要考查正負(fù)角的定義以及弧度制,屬于基礎(chǔ)題.2.D【解析】
利用復(fù)數(shù)的除法運算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點睛】本題主要考查了復(fù)數(shù)的除法運算,其中解答中熟記復(fù)數(shù)的除法運算法則是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.3.C【解析】
根據(jù)條件,方程.即,結(jié)合雙曲線的標(biāo)準(zhǔn)方程的特征判斷曲線的類型.【詳解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示實軸在y軸上的雙曲線,
故選C.【點睛】本題考查雙曲線的標(biāo)準(zhǔn)方程的特征,依據(jù)條件把已知的曲線方程化為是關(guān)鍵.4.B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對數(shù)運算性質(zhì)比較a,c進而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對稱,則,即,又,所以,.故選:B.【點睛】本題主要考查對數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.5.D【解析】
列出所有圓內(nèi)的整數(shù)點共有37個,滿足條件的有7個,相除得到概率.【詳解】因為是整數(shù),所以所有滿足條件的點是位于圓(含邊界)內(nèi)的整數(shù)點,滿足條件的整數(shù)點有共37個,滿足的整數(shù)點有7個,則所求概率為.故選:.【點睛】本題考查了古典概率的計算,意在考查學(xué)生的應(yīng)用能力.6.B【解析】
連接,,,,由正四棱柱的特征可知,再由平面的基本性質(zhì)可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設(shè),則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質(zhì),還考查了推理論證和運算求解的能力,屬于中檔題.7.C【解析】
根據(jù)不動點的定義,利用換底公式分離參數(shù)可得;構(gòu)造函數(shù),并討論的單調(diào)性與最值,畫出函數(shù)圖象,即可確定的取值范圍.【詳解】由得,.令,則,令,解得,所以當(dāng)時,,則在內(nèi)單調(diào)遞增;當(dāng)時,,則在內(nèi)單調(diào)遞減;所以在處取得極大值,即最大值為,則的圖象如下圖所示:由有且僅有一個不動點,可得得或,解得或.故選:C【點睛】本題考查了函數(shù)新定義的應(yīng)用,由導(dǎo)數(shù)確定函數(shù)的單調(diào)性與最值,分離參數(shù)法與構(gòu)造函數(shù)方法的應(yīng)用,屬于中檔題.8.C【解析】
由開始,按照框圖,依次求出s,進行判斷?!驹斀狻?,故選C.【點睛】框圖問題,依據(jù)框圖結(jié)構(gòu),依次準(zhǔn)確求出數(shù)值,進行判斷,是解題關(guān)鍵。9.D【解析】
利用特殊值代入法,作差法,排除不符合條件的選項,得到符合條件的選項.【詳解】已知,賦值法討論的情況:(1)當(dāng)時,令,,則,,排除B、C選項;(2)當(dāng)時,令,,則,排除A選項.故選:D.【點睛】比較大小通常采用作差法,本題主要考查不等式與不等關(guān)系,不等式的基本性質(zhì),利用特殊值代入法,排除不符合條件的選項,得到符合條件的選項,是一種簡單有效的方法,屬于中等題.10.A【解析】
求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.11.B【解析】
由目標(biāo)函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標(biāo)函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標(biāo),然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標(biāo)函數(shù)的最大值為9,可得直線與直線的交點,使目標(biāo)函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應(yīng)的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.12.C【解析】
由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【點睛】此題考查立體幾何中與點、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:因為是等差數(shù)列,所以,即,又,所以,所以.故答案為1.【考點】等差數(shù)列的基本性質(zhì)【名師點睛】在等差數(shù)列五個基本量,,,,中,已知其中三個量,可以根據(jù)已知條件,結(jié)合等差數(shù)列的通項公式、前項和公式列出關(guān)于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應(yīng)用.14..【解析】
化簡集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因為,所以實數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.【點睛】本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.15.【解析】
先求函的定義域,再對函數(shù)進行求導(dǎo),再解不等式得單調(diào)區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減,當(dāng)時,函數(shù)取到極大值,極大值為.故答案為:.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應(yīng)用.16.【解析】
解:故答案為:【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)推導(dǎo)出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設(shè)AC與BD的交點為G,推導(dǎo)出EC//FG,取BC的中點為O,連結(jié)OD,則OD⊥BC,以O(shè)為坐標(biāo)原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標(biāo)原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標(biāo)系.不妨設(shè),則,,,,,,,設(shè)平面的法向量,則,取,同理可得平面的法向量,設(shè)平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設(shè)與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設(shè),因為,,在中,,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關(guān)系進而證明線線相等,屬于中檔題.18.(Ⅰ)1131;(Ⅱ)(i);(ⅱ)125箱【解析】
(Ⅰ)根據(jù)參考數(shù)據(jù)得到和,代入得到回歸直線方程,,再代入求成本,最后代入利潤公式;(Ⅱ)(?。┦紫确謩e計算水果箱數(shù)在和內(nèi)的天數(shù),再用編號列舉基本事件的方法求概率;(ⅱ)根據(jù)頻率分布直方圖直接計算結(jié)果.【詳解】(Ⅰ)根據(jù)題意,,所以,所以.又,所以.所以時,(千元),即該新奇水果100箱的成本為8314元,故該新奇水果100箱的利潤.(Ⅱ)(i)根據(jù)頻率分布直方圖,可知水果箱數(shù)在內(nèi)的天數(shù)為設(shè)這兩天分別為a,b,水果箱數(shù)在內(nèi)的天數(shù)為,設(shè)這四天分別為A,B,C,D,所以隨機抽取2天的基本結(jié)果為,,,,,,,,,,,,,,,共15種.滿足恰有1天的水果箱數(shù)在內(nèi)的結(jié)果為,,,,,,,,共8種,所以估計恰有1天的水果箱數(shù)在內(nèi)的概率為.(ⅱ)這11天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值為(箱).【點睛】本題考查考查回歸直線方程,統(tǒng)計,概率,均值的綜合問題,意在考查分析數(shù)據(jù),應(yīng)用數(shù)據(jù),解決問題的能力,屬于中檔題型.19.(1):,:;(2)【解析】
(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數(shù)方程、極坐標(biāo)方程和直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 44993-2024電動汽車非車載充電機現(xiàn)場檢測儀
- 五年級數(shù)學(xué)下冊完整教案
- 三年級上冊全冊教案
- 高一信息技術(shù)教案(全套)
- 能源項目風(fēng)險管理 課件 2-能源項目風(fēng)險規(guī)劃管理
- 高一化學(xué)成長訓(xùn)練:第一單元核外電子排布與周期律
- 2024屆四川巫溪縣白馬中學(xué)高考沖刺押題(最后一卷)化學(xué)試卷含解析
- 2024高中語文第三單元因聲求氣吟詠詩韻第14課自主賞析閣夜課時作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考地理一輪復(fù)習(xí)第二部分人文地理-重在運用第二章城市與城市化第18講城市內(nèi)部空間結(jié)構(gòu)與不同等級城市的服務(wù)功學(xué)案新人教版
- 2024高考化學(xué)一輪復(fù)習(xí)第3章自然界及材料家族中的元素第3講硫及其化合物學(xué)案魯科版
- 保險公估作業(yè)指導(dǎo)書x
- 新人教版八年級數(shù)學(xué)下冊 第18章平行四邊形 導(dǎo)學(xué)案
- 《生理心理學(xué)實驗實訓(xùn)》指導(dǎo)書-
- 教練技術(shù)三階段講義
- GB/T 23799-2021車用甲醇汽油(M85)
- 車工工藝課件(緒論、一章)
- 催收服務(wù)工作手冊方案
- 信息化系統(tǒng)數(shù)據(jù)恢復(fù)應(yīng)急演練方案
- 常用有機溶劑性質(zhì)
- 公司沒有出審計報告情況說明解釋
- (完整word版)高考英語作文練習(xí)紙(標(biāo)準(zhǔn)答題卡)
評論
0/150
提交評論