版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
QuantumMechanicsChapter7.IdenticalParticles
WehaveseeninSection6.4thatthestatesavailab1etoidenticalparticlesofhalf-integerspin(fermions)arerestrictedbythePauliexclusionprinciple:
Notwoidenticalfermionscanexistinthesamequantumstate.Wenowexploreamultitudeofconsequencesofthisprinciple.§7.1IdenticalParticlesandSymmetryofwaveFunctionsIndistinguishability
Toanalyzesystemscontaininganumberofidenticalelectrons(e.g.,anyatomexcepthydrogen)wemustexpressourequationsinawaythatmakesnodistinctionbetweenoneelectronandanother.Itissometimesdifficulttograspthisfact,becauseinwritingequationswehavebecomeaccustomedtoidentifyingeachparticleinacollectionbyaseparatelabel.
Iftheparticlesaretrulyindistinguishable,wemustbeverycarefulinusinglabels.Forexample,supposethattwoelectronscometogether,sothattheirwavefunctionsoverlap.Whentheyflyapartagain,therecanbenoway,aftertheyhaveinteracted,todeterminewhichonecameinfromtheleftandwhichonecamefromtheright.Iftherewereaway,thiswouldmeanthatelectronsarenotidentical.SymmetryofWaveFunctionsHowcanwewriteawavefunctionfortwoidenticalparticles,ifwecannotuselabelstodescribethecoordinatesofeachelectron?Theanswerisclearwhenwedevelopthegeneralformofthewavefunctionofasystemofanynumberofparticles.(ThisisanextensionofthediscussioninSection5.1.)ThespatialpartofthewavefunctionforasystemofNparticlesisafunctionof3Ncoordinates,
uT(x1,y1,z1,┅,xN,yN,zN),whichweabbreviateasuT(1,2,┅N).?Whathappensifweinterchangethecoordinatesofparticles1and2?Afterthisinterchange,thefunctionuTdependsonthecoordinatesofparticle1inthesamewaythatitformerlydependedonthecoordinatesofparticle2,andviceversa.Thuswehaveformallyinterchangedtheparticles.Butaccordingtothedefinitionofindistinguishability,iftheparticlesareidentical,thestateresultingfromthisinterchangecannotbedistinguishedfromtheoriginalstate.Thismeansthat
uT(2,1,┅N)=AuT(1,2,┅N)(11.1)whereAisaconstant.Interchangingparticles1and2againmusthavethesameeffectonthewavefunction,yielding
uT(1,2,┅N)=AuT(2,1,┅N)(11.2)CombiningEqs.(11.1)and(11.2)thenyields
uT(2,1,┅N)=A2uT(2,1,┅N)(11.3)
andthusA2=1.IfA=+1,wesaythatthewavefunctionissymmetricwithrespecttointerchangeofthetwoparticles;ifA=-1,thefunctionisanti-symmetric.Figure11.1illustratesthesetwosituationsgraphicallyfortheone-dimensionalcase,wherethefunctionuisafunctionoftwovariablesonly:thecoordinatex1forparticle1,andthecoordinatex2forparticle2.Noticethatthelinex1=x2isalineofsymmetry.Interchangingx1andx2isequivalenttoreflectingthefigurealongthisline.
Figure11.1showsgraphicallytheindistinguishabilityofthetwoparticles.Althoughweputdifferentlabelsonthetwoaxes,anyphysicalresultmustbeindependentofthelabel.Forexample,wecanfindtheprobabilitythatatleastoneofthetwoparticleshasxcoordinatebetween+aand+b,byusingthefactthatu*uistheprobabilitydensityforbothparticles.Thatmeansthatu*uistheprobabilitydensityforaparticleateachoftwocoordinates.Tofindtheprobabilitythatoneorbothoftheparticlesislocatedbetweenx=aandx=b,weintegrateu*uovertheentireregionforwhicheithera<x1<bora<x2<b.ThisregionisenclosedbydashedlinesinFigure11.1.Figure11.1(b)illustratesanimportantgeneralfeatureofantisymmetricfunctions,namelythatu=0whenx1=x2.Toprovethatthismustbeso,letx1=x2=c.Then,fromEq.(11.1),wemaywriteu(x2,x1)=-u(x1,x2)(11.4)
oru(c,c)=-u(c,c)(11.5)whichcanbetrueonlyifu(c,c)=0.FIGLRE11.1Contourmapshowingvaluesofpossible(a)symmetricand(b)antisymmetricwavefunctionsuasfunctionsofthexcoordinatesx1andx2oftwoidenticalparticles.Contoursconnectpointsatwhichuhasaconstantvalue.Onthelinex1=x2,umustbezerointheantisymmetriccase.SeparationofVariables
Todeterminethewavefunctionforasystemoftwoormoreparticlesisaformidabletask.Thereforewestartwiththeapproximationthatthereisnointeractionbetweentheparticles.Thatis,weassumethateachparticlemovesinaknownexternalpotentialthatisindependentoftheposition(s)oftheotherparticle(s).ThusfortwoparticleswewritetheSchreodingerequationas[-(?2/2m)(▽12+▽22)+V(1)+V(2)]u(1,2)=ETu(1,2) (11.6)
where▽1operatesonthecoordinatesofparticle1,andV(1)isthepotentialenergyofparticle1andisafunctionofthecoordinatesofparticle1only.Wenextassumethattheparticlesaredistinguishable,andweseparatethevariablesbywritingu(1,2)=ua(1)ub(2),whereuaandubmaybedifferentfunctions.SubstitutionintoEq.(11.6)andregroupingtermsyields [-(?2/2m)(▽12+V(1)]ua(1)ub(2)+ [-(?2/2m)(▽22+V(2)]ua(1)ub(2)=ET
ua(1)ub(2) (11.6)Asbefore,wenowseparatethevariablesbydividingalltermsbythewavefunctionua(1)ub(2),Wenowconclude,asinSection9.1.thateachtermmustequalaconstant.LabelingtheseconstantsEaandEb,wehaveorwhereEa+Eb=ET.Exceptforthelabels,thetwoequations(11.9)arereallythesameequation,thesingle-particleSchreodingerequation.Therefore,ifbothparticlesaresubjecttothesamepotential,uaandubbelongtothesamesetofeigenfunctions.Forexample,asafirstapproximationwecanassumethateachofthetwoelectronsinaheliumatomseparatelyoccupiesoneofthestatesofaheliumion,whosewavefunctionsaregiveninSection5.2(Table9.1withZ=2).Theenergyofeachelectronistherefore-54.4eV[fromEq.(9.12)],andthetotalenergyis-108.8accordingtoEq.(11.8).Thisisfarfromthemeasuredenergyfortheheliumatom,becausewehaveneglectedthepotentialenergyofrepulsionbetweenthetwoelectrons.However,Chapter8showshowtoapproximatethisenergybyamethodthatgivesgreatagreementwithexperiment.§7.2SymmetryofStatesforTwoIdenticalParticlesThefunctionsua(1)ub(2)ofEq.(11.7)isingeneralneitherantisymmetricnorsymmetric;thusitisunacceptableasawavefunctionforastateoftwoidenticalparticles.Butwecanusethisfunctiontoconstructacceptablewavefunctions.Thesymmetricfunctionisthesum
Us(1,2)=[ua(1)ub(2)+ua(2)ub(1)]/(2)1/2(11.10)
TheantisymmetricfunctionisUA(1,2)=[ua(1)ub(2)-ua(2)ub(1)]/(2)1/2(11.11)Thedivisor(2)1/2isneededtopreservethenormalizationofthewavefunction,ontheassumptionthatuaandubareindividuallynormalized.Foreachofthesewavefunctionsthereisoneparticleinthesingle-particlestatewhosewavefunctionisua,andoneparticleinthesingle-particlestatewhosewavefunctionisub,butwehavenowaytosaywhichparticleisinwhichstate.Youmayverifythat
uS(1,2)=uS(2,1)(11.12)
uA(1,2)=-uA(2,1)(11.13)inagreementwithEq.(11.3).SpinStatesandSymmetryStudyofmanyphenomenahasshownthatallparticleswithhalf-integerspin(electrons,protons,neutrons,muons,neutrinos,andmanyothers)musthaveantisymmetricwavefunctions.Particleswithintegerspin(photons,pions,andothers)musthavesymmetricwavefunctions.ThesefactsaredirectlyconnectedwiththePauliexclusionprinciple,becausetheantisymmetricwavefunction(Eq.11.10)vanisheswhenbothparticlesareinthesamestate:
ua(1)ua(2)-ua(2)ua(1)≡0(11.14)
Thereforenotwoelectrons(orotherspin-1/2particles)cansimultaneouslyoccupythesamequantumstate.Theantisymmetryrequirementappliestoallcoordinates,includingspin.Itisconvenienttoseparatethewavefunctionintotwofactors,aspinfunctionandaspacefunction.Whenthespacefactorissymmetric,thespinfactormustbeantisymmetric,andviceversa.Forexample,therearefourindependentcompletelyantisymmetricstatefunctionsfortwoelectronsinstatesaandb.InDiracnotation,thenormalizedstatesare[|a>1|b>2+|a>2|b>1][|+>1|->2-|+>2|->1]/2(11.15a)[|a>1|b>2-|a>2|b>1]|+>1|+>2/(2)1/2(11.15b)?[|a>1|b>2-|a>2|b>1][|+>1|->2+|+>2|->1]/2(11.15c)[|a>1|b>2-|a>2|b>1]|->1|->2/(2)1/2(11.15d)Thefirstofthese,calledthesingletstate,issymmetricinthespacefunctions|a>and|b>butantisymmetricinthespinfunctions|+>and|->.Thusitisantisymmetricwithrespecttotheexchangeofallcoordinatesofthetwoparticles.Theotherthree,calledtripletstates,areantisymmetricinthespacefunctionsbutsymmetricinthespinfunctions.
Forthetripletstates,thezcomponentofthespinangularmomentumis+?,0,and-?,respectively.Fromthegeneralrulesforangularmomentum[Eqs.(10.18)-(10.20)],wethusdeducethatthissetofstateshasatotalspinquantumnumberofS=1.[exercise]Thesquareofthetotalspinangularmomentumis,accordingtothoserules,equaltoS(S+l)?2,or2?2.Youmayveritythesestatementsbyapplyingthespinoperators(seeExercise1).ThisdivisionofstatesintoatripletwithS=landasingletwithS=0ischaracteristicofstatesofanytwoparticlesofspin1/2,whetherornottheparticlesareidentical.Thisfacthasastatisticalconsequencethatiswellverifiedexperimentally:Iftwoparticlesofspin1/2cometogetheratrandom,theirspinsare“parallel”(S=1)threequartersofthetime,andtheyare“antiparallel”onequarterofthetime.ThismeansthateachofthefourstatesofEq.(11.15)isequallylikelytooccur.Forexample,inarandomcollectionofhydrogenmolecules,threequartersareortho-hydrogenwhoseprotonshavetotalspinnumberSp=1,andtheotheronequarterarepara-hydrogenwithzerototalprotonspin.
ExchangeEnergyTherequirementthatthetotalwavefunction,involvingallcoordinatevariables,beantisymmetricleadstoconsequencesthatresembletheeffectsofanewforcethatisunknowninclassicalphysics.This“force”isnotaforceintheclassicalsense.However,theeffectofthisrequirementisthattheelectrons'motionsarecorrelatedinawaythatsuggeststhepresenceofanotherforceinadditiontotheCoulombforce.(Althoughwecannotfollowthetrajectoriesoftheelectrons,wededucefromtheobservedenergylevelsthatthiscorrelationispresent.)Theeffectmaybemadeplausiblefromthefollowingconsiderations:Whenthespacepartofthewavefunctionisantisymmetric,thecombinedwavefunc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 04版3園林景觀設(shè)計及施工合同
- 2024-2030年版中國翡翠玉鐲行業(yè)營銷模式及投資策略分析報告
- 2024-2030年新版中國帽釘項目可行性研究報告
- 2024年國際石油運輸服務(wù)合同
- 2024-2030年全球市場藥丸收納盒市場銷售情況及需求規(guī)模預(yù)測報告
- 2024-2030年全球及中國金剛石磨盤行業(yè)發(fā)展現(xiàn)狀及供需前景預(yù)測報告
- 2024-2030年全球及中國螺紋切削機床行業(yè)產(chǎn)銷現(xiàn)狀及需求趨勢預(yù)測報告
- 2024-2030年全球及中國聚乙烯蒸汽控制層行業(yè)運行動態(tài)及投資前景預(yù)測報告
- 2024-2030年全球及中國渦輪螺旋槳發(fā)動機行業(yè)發(fā)展動態(tài)及前景規(guī)劃分析報告
- 2024-2030年全球及中國手動鎖定登山扣行業(yè)競爭動態(tài)及銷售策略分析報告
- 師范專業(yè)認證背景下師范生實踐教學(xué)體系研究
- 淺談管理者的自我管理
- 髂動脈潰瘍的健康宣教
- 第一章 結(jié)構(gòu)及其設(shè)計 課件-2023-2024學(xué)年高中通用技術(shù)蘇教版(2019)必修《技術(shù)與設(shè)計2》
- Access數(shù)據(jù)庫課程標準
- 幼兒園中班語言:《兩只蚊子吹牛皮》 課件
- 臨時用電漏電保護器運行檢測記錄表
- 頭痛的國際分類(第三版)中文
- 音樂ppt課件《小小的船》
- 幼兒園教學(xué)課件語言教育《雪地里的小畫家》
- 結(jié)構(gòu)化面試經(jīng)典100題及答案
評論
0/150
提交評論