版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是函數(shù)圖象上的一點(diǎn),過(guò)作圓的兩條切線,切點(diǎn)分別為,則的最小值為()A. B. C.0 D.2.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.3.?dāng)?shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,則實(shí)數(shù)λ的最大值為()A. B. C. D.4.設(shè)全集,集合,,則()A. B. C. D.5.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件6.從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖:根據(jù)頻率分布直方圖,可知這部分男生的身高的中位數(shù)的估計(jì)值為A. B.C. D.7.若集合M={1,3},N={1,3,5},則滿足M∪X=N的集合X的個(gè)數(shù)為()A.1 B.2C.3 D.48.“角谷猜想”的內(nèi)容是:對(duì)于任意一個(gè)大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.99.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.010.歷史上有不少數(shù)學(xué)家都對(duì)圓周率作過(guò)研究,第一個(gè)用科學(xué)方法尋求圓周率數(shù)值的人是阿基米德,他用圓內(nèi)接和外切正多邊形的周長(zhǎng)確定圓周長(zhǎng)的上下界,開(kāi)創(chuàng)了圓周率計(jì)算的幾何方法,而中國(guó)數(shù)學(xué)家劉徽只用圓內(nèi)接正多邊形就求得的近似值,他的方法被后人稱為割圓術(shù).近代無(wú)窮乘積式、無(wú)窮連分?jǐn)?shù)、無(wú)窮級(jí)數(shù)等各種值的表達(dá)式紛紛出現(xiàn),使得值的計(jì)算精度也迅速增加.華理斯在1655年求出一個(gè)公式:,根據(jù)該公式繪制出了估計(jì)圓周率的近似值的程序框圖,如下圖所示,執(zhí)行該程序框圖,已知輸出的,若判斷框內(nèi)填入的條件為,則正整數(shù)的最小值是A. B. C. D.11.已知水平放置的△ABC是按“斜二測(cè)畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.12.設(shè)雙曲線的右頂點(diǎn)為,右焦點(diǎn)為,過(guò)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),則的面積為()A. B. C.5 D.6二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點(diǎn),雙曲線的漸近線上存在點(diǎn)滿足,則的最大值為_(kāi)_______.14.已知i為虛數(shù)單位,復(fù)數(shù),則=_______.15.某商場(chǎng)一年中各月份的收入、支出情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中正確的是______.①2至3月份的收入的變化率與11至12月份的收入的變化率相同;②支出最高值與支出最低值的比是6:1;③第三季度平均收入為50萬(wàn)元;④利潤(rùn)最高的月份是2月份.16.在的二項(xiàng)展開(kāi)式中,所有項(xiàng)的系數(shù)的和為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,直三棱柱中,分別是的中點(diǎn),.(1)證明:平面;(2)求二面角的余弦值.18.(12分)設(shè)函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)若函數(shù)的圖象與直線所圍成的四邊形面積大于20,求的取值范圍.19.(12分)已知矩陣的一個(gè)特征值為4,求矩陣A的逆矩陣.20.(12分)改革開(kāi)放40年,我國(guó)經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識(shí)也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識(shí),某小組利用假期進(jìn)行一次全市駕駛員交通安全意識(shí)調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問(wèn)卷測(cè)評(píng),所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識(shí)強(qiáng).安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性女性合計(jì)(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識(shí)強(qiáng)的概率;(Ⅱ)已知交通安全意識(shí)強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識(shí)與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識(shí)強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82821.(12分)如圖,己知圓和雙曲線,記與軸正半軸、軸負(fù)半軸的公共點(diǎn)分別為、,又記與在第一、第四象限的公共點(diǎn)分別為、.(1)若,且恰為的左焦點(diǎn),求的兩條漸近線的方程;(2)若,且,求實(shí)數(shù)的值;(3)若恰為的左焦點(diǎn),求證:在軸上不存在這樣的點(diǎn),使得.22.(10分)若關(guān)于的方程的兩根都大于2,求實(shí)數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導(dǎo)數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因?yàn)樵谏蠁握{(diào)遞增,且,所以當(dāng)時(shí),;當(dāng)時(shí),,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當(dāng)時(shí)等號(hào)成立).故選:C【點(diǎn)睛】此題考查的是兩個(gè)向量的數(shù)量積的最小值,利用了導(dǎo)數(shù)求解,考查了轉(zhuǎn)化思想和運(yùn)算能力,屬于難題.2、A【解析】
由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)椋裕?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..3、D【解析】
利用等差數(shù)列通項(xiàng)公式推導(dǎo)出λ,由d∈[1,2],能求出實(shí)數(shù)λ取最大值.【詳解】∵數(shù)列{an}是等差數(shù)列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是減函數(shù),∴d=1時(shí),實(shí)數(shù)λ取最大值為λ.故選D.【點(diǎn)睛】本題考查實(shí)數(shù)值的最大值的求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.4、B【解析】
可解出集合,然后進(jìn)行補(bǔ)集、交集的運(yùn)算即可.【詳解】,,則,因此,.故選:B.【點(diǎn)睛】本題考查補(bǔ)集和交集的運(yùn)算,涉及一元二次不等式的求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、A【解析】
畫出“,,,所表示的平面區(qū)域,即可進(jìn)行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.【點(diǎn)睛】本題考查了不等式表示的平面區(qū)域問(wèn)題,考查命題的充分條件和必要條件的判斷,難度較易.6、C【解析】
由題可得,解得,則,,所以這部分男生的身高的中位數(shù)的估計(jì)值為,故選C.7、D【解析】可以是共4個(gè),選D.8、B【解析】
模擬程序運(yùn)行,觀察變量值可得結(jié)論.【詳解】循環(huán)前,循環(huán)時(shí):,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點(diǎn)睛】本題考查程序框圖,考查循環(huán)結(jié)構(gòu),解題時(shí)可模擬程序運(yùn)行,觀察變量值,從而得出結(jié)論.9、C【解析】
集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.【點(diǎn)睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.10、B【解析】
初始:,,第一次循環(huán):,,繼續(xù)循環(huán);第二次循環(huán):,,此時(shí),滿足條件,結(jié)束循環(huán),所以判斷框內(nèi)填入的條件可以是,所以正整數(shù)的最小值是3,故選B.11、A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點(diǎn)睛】本題主要考查斜二測(cè)畫法的定義和三角形面積的計(jì)算,意在考察學(xué)生對(duì)這些知識(shí)的掌握水平和分析推理能力.12、A【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程求出右頂點(diǎn)、右焦點(diǎn)的坐標(biāo),再求出過(guò)點(diǎn)與的一條漸近線的平行的直線方程,通過(guò)解方程組求出點(diǎn)的坐標(biāo),最后利用三角形的面積公式進(jìn)行求解即可.【詳解】由雙曲線的標(biāo)準(zhǔn)方程可知中:,因此右頂點(diǎn)的坐標(biāo)為,右焦點(diǎn)的坐標(biāo)為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對(duì)稱性不妨設(shè)點(diǎn)作平行的一條漸近線的直線與交于點(diǎn),所以直線的斜率為,因此直線方程為:,因此點(diǎn)的坐標(biāo)是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A【點(diǎn)睛】本題考查了雙曲線的漸近線方程的應(yīng)用,考查了兩直線平行的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設(shè),由可得,整理得,即點(diǎn)在以為圓心,為半徑的圓上.又點(diǎn)到雙曲線的漸近線的距離為,所以當(dāng)雙曲線的漸近線與圓相切時(shí),取得最大值,此時(shí),解得.14、【解析】
先把復(fù)數(shù)進(jìn)行化簡(jiǎn),然后利用求模公式可得結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)模的求解,利用復(fù)數(shù)的運(yùn)算把復(fù)數(shù)化為的形式是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).15、①②③【解析】
通過(guò)圖片信息直接觀察,計(jì)算,找出答案即可.【詳解】對(duì)于①,2至月份的收入的變化率為20,11至12月份的變化率為20,故相同,正確.對(duì)于②,支出最高值是2月份60萬(wàn)元,支出最低值是5月份的10萬(wàn)元,故支出最高值與支出最低值的比是6:1,正確.對(duì)于③,第三季度的7,8,9月每個(gè)月的收入分別為40萬(wàn)元,50萬(wàn)元,60萬(wàn)元,故第三季度的平均收入為50萬(wàn)元,正確.對(duì)于④,利潤(rùn)最高的月份是3月份和10月份都是30萬(wàn)元,高于2月份的利潤(rùn)是80﹣60=20萬(wàn)元,錯(cuò)誤.故答案為①②③.【點(diǎn)睛】本題考查利用圖象信息,分析歸納得出正確結(jié)論,屬于基礎(chǔ)題目.16、1【解析】
設(shè),令,的值即為所有項(xiàng)的系數(shù)之和?!驹斀狻吭O(shè),令,所有項(xiàng)的系數(shù)的和為。【點(diǎn)睛】本題主要考查二項(xiàng)式展開(kāi)式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開(kāi)式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析(2)【解析】
(1)連接交于點(diǎn),由三角形中位線定理得,由此能證明平面.(2)以為坐標(biāo)原點(diǎn),的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,的方向?yàn)檩S正方向,建立空間直角坐標(biāo)系.分別求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.【詳解】證明:證明:連接交于點(diǎn),則為的中點(diǎn).又是的中點(diǎn),連接,則.因?yàn)槠矫妫矫?,所以平面.?)由,可得:,即所以又因?yàn)橹崩庵?,所以以點(diǎn)為坐標(biāo)原點(diǎn),分別以直線為軸、軸、軸,建立空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則且,可解得,令,得平面的一個(gè)法向量為,同理可得平面的一個(gè)法向量為,則所以二面角的余弦值為.【點(diǎn)睛】本題主要考查直線與平面平行、二面角的概念、求法等知識(shí),考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)(2)【解析】
(Ⅰ)當(dāng)時(shí),不等式為.若,則,解得或,結(jié)合得或.若,則,不等式恒成立,結(jié)合得.綜上所述,不等式解集為.(Ⅱ)則的圖象與直線所圍成的四邊形為梯形,令,得,令,得,則梯形上底為,下底為11,高為..化簡(jiǎn)得,解得,結(jié)合,得的取值范圍為.點(diǎn)睛:含絕對(duì)值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對(duì)值的幾何意義求解.法一是運(yùn)用分類討論思想,法二是運(yùn)用數(shù)形結(jié)合思想,將絕對(duì)值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動(dòng)向.19、.【解析】
根據(jù)特征多項(xiàng)式可得,可得,進(jìn)而可得矩陣A的逆矩陣.【詳解】因?yàn)榫仃嚨奶卣鞫囗?xiàng)式,所以,所以.因?yàn)?,且,所?【點(diǎn)睛】本題考查矩陣的特征多項(xiàng)式以及逆矩陣的求解,是基礎(chǔ)題.20、(Ⅰ).0.2(Ⅱ)見(jiàn)解析,有的把握認(rèn)為交通安全意識(shí)與性別有關(guān)(Ⅲ)見(jiàn)解析,【解析】
(Ⅰ)直接根據(jù)頻率和為1計(jì)算得到答案.(Ⅱ)完善列聯(lián)表,計(jì)算,對(duì)比臨界值表得到答案.(Ⅲ)的取值為,計(jì)算概率得到分布列,計(jì)算數(shù)學(xué)期望得到答案.【詳解】(Ⅰ),解得.所以該城市駕駛員交通安全意識(shí)強(qiáng)的概率.(Ⅱ)安全意識(shí)強(qiáng)安全意識(shí)不強(qiáng)合計(jì)男性163450女性44650合計(jì)2080100,所以有的把握認(rèn)為交通安全意識(shí)與性別有關(guān)(Ⅲ)的取值為所以的分布列為期望.【點(diǎn)睛】本題考查了獨(dú)立性檢驗(yàn),分布列,數(shù)學(xué)期望,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21、(1);(2);(2)見(jiàn)解析.【解析】
(1)由圓的方程求出點(diǎn)坐標(biāo),得雙曲線的,再計(jì)算出后可得漸近線方程;(2)設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可得,,由先求出,回代后求得坐標(biāo),計(jì)算;(3)由已知得,設(shè),由圓方程與雙曲線方程聯(lián)立,消去后整理,可解得,,求出,從而可得,由,可知滿足要求的點(diǎn)不存在.【詳解】(1)由題意圓方程為,令得,∴,即,∴,,∴漸近線方程為.(2)由(1)圓方程為,,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人擔(dān)保借款協(xié)議模板在線查看
- 特色小鎮(zhèn)旅游服務(wù)合同
- 激發(fā)創(chuàng)新熱情的研學(xué)旅行合同
- 運(yùn)營(yíng)商長(zhǎng)期技術(shù)服務(wù)合同
- 銀行企業(yè)貸款延期合同
- 服務(wù)合同回響好評(píng)
- 家庭護(hù)工服務(wù)合同模板
- 軟木購(gòu)銷合同模板
- 股份制公司合同協(xié)議簽訂流程范例
- 網(wǎng)絡(luò)服務(wù)合同中的知識(shí)產(chǎn)權(quán)保護(hù)
- 2024-2025學(xué)年小學(xué)美術(shù)一年級(jí)上冊(cè)(2024)桂美版(2024)教學(xué)設(shè)計(jì)合集
- 國(guó)際貿(mào)易理論與實(shí)務(wù) 課件 第7章 區(qū)域經(jīng)濟(jì)一體化
- 2024內(nèi)蒙古財(cái)經(jīng)大學(xué)輔導(dǎo)員公開(kāi)招聘(列編招聘)3人及歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 2024中國(guó)華電集團(tuán)限公司校招+社招高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 國(guó)家開(kāi)放大學(xué)電大《會(huì)計(jì)信息系統(tǒng)》期末終考題庫(kù)及標(biāo)準(zhǔn)參考答案
- 多器官功能障礙綜合征MODS診療及護(hù)理試題
- 安徽省2023-2024學(xué)年七年級(jí)上學(xué)期期末數(shù)學(xué)試題(原卷版)
- 2024年人教版八年級(jí)生物(上冊(cè))期末試卷及答案(各版本)
- 醫(yī)院等級(jí)創(chuàng)建工作匯報(bào)
- 2024至2030年中國(guó)3C電子產(chǎn)品租賃行業(yè)市場(chǎng)深度研究及投資規(guī)劃建議報(bào)告
- 11G902-1 G101系列圖集常用構(gòu)造三維節(jié)點(diǎn)詳圖
評(píng)論
0/150
提交評(píng)論