版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.實數(shù)a在數(shù)軸上對應(yīng)點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a(chǎn)<﹣a<a2 C.﹣a<a2<a D.a(chǎn)<a2<﹣a2.拋物線y=ax2﹣4ax+4a﹣1與x軸交于A,B兩點,C(x1,m)和D(x2,n)也是拋物線上的點,且x1<2<x2,x1+x2<4,則下列判斷正確的是()A.m<n B.m≤n C.m>n D.m≥n3.某中學(xué)籃球隊12名隊員的年齡如下表:年齡:(歲)13141516人數(shù)1542關(guān)于這12名隊員的年齡,下列說法錯誤的是()A.眾數(shù)是14歲 B.極差是3歲 C.中位數(shù)是14.5歲 D.平均數(shù)是14.8歲4.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉(zhuǎn)動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m5.如圖,點D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一條弦,則cos∠OBD=()A. B. C. D.6.如圖,若數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),用圓規(guī)在數(shù)軸上畫點C,則與點C對應(yīng)的實數(shù)是()A.2 B.3 C.4 D.57.如圖,已知AB∥CD,AD=CD,∠1=40°,則∠2的度數(shù)為()A.60° B.65° C.70° D.75°8.小王拋一枚質(zhì)地均勻的硬幣,連續(xù)拋4次,硬幣均正面朝上落地,如果他再拋第5次,那么硬幣正面朝上的概率為()A.1 B. C. D.9.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.10.已知拋物線y=x2+bx+c的對稱軸為x=2,若關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍內(nèi)有兩個相等的實數(shù)根,則c的取值范圍是(
)A.c=4B.﹣5<c≤4C.﹣5<c<3或c=4D.﹣5<c≤3或c=4二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標(biāo)系xOy中,四邊形OABC是正方形,點C(0,4),D是OA中點,將△CDO以C為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)90°后,再將得到的三角形平移,使點C與點O重合,寫出此時點D的對應(yīng)點的坐標(biāo):_____.12.如果x+y=5,那么代數(shù)式的值是______.13.正十二邊形每個內(nèi)角的度數(shù)為.14.一個n邊形的內(nèi)角和為1080°,則n=________.15.如圖,以扇形OAB的頂點O為原點,半徑OB所在的直線為x軸,建立平面直角坐標(biāo)系,點B的坐標(biāo)為(2,0),若拋物線與扇形OAB的邊界總有兩個公共點,則實數(shù)k的取值范圍是.16.已知一次函數(shù)y=kx+2k+3的圖象與y軸的交點在y軸的正半軸上,且函數(shù)值y隨x的增大而減小,則k所能取到的整數(shù)值為________.三、解答題(共8題,共72分)17.(8分)如圖,在五邊形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度數(shù).18.(8分)反比例函數(shù)在第一象限的圖象如圖所示,過點A(2,0)作x軸的垂線,交反比例函數(shù)的圖象于點M,△AOM的面積為2.求反比例函數(shù)的解析式;設(shè)點B的坐標(biāo)為(t,0),其中t>2.若以AB為一邊的正方形有一個頂點在反比例函數(shù)的圖象上,求t的值.19.(8分)在一個不透明的口袋里裝有四個球,這四個球上分別標(biāo)記數(shù)字﹣3、﹣1、0、2,除數(shù)字不同外,這四個球沒有任何區(qū)別.從中任取一球,求該球上標(biāo)記的數(shù)字為正數(shù)的概率;從中任取兩球,將兩球上標(biāo)記的數(shù)字分別記為x、y,求點(x,y)位于第二象限的概率.20.(8分)廬陽春風(fēng)體育運動品商店從廠家購進甲,乙兩種T恤共400件,其每件的售價與進貨量(件)之間的關(guān)系及成本如下表所示:T恤每件的售價/元每件的成本/元甲50乙60(1)當(dāng)甲種T恤進貨250件時,求兩種T恤全部售完的利潤是多少元;若所有的T恤都能售完,求該商店獲得的總利潤(元)與乙種T恤的進貨量(件)之間的函數(shù)關(guān)系式;在(2)的條件下,已知兩種T恤進貨量都不低于100件,且所進的T恤全部售完,該商店如何安排進貨才能使獲得的利潤最大?21.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線與x軸交于點A,與雙曲線的一個交點為B(-1,4).求直線與雙曲線的表達(dá)式;過點B作BC⊥x軸于點C,若點P在雙曲線上,且△PAC的面積為4,求點P的坐標(biāo).22.(10分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標(biāo);(2)點M是拋物線上的動點,設(shè)點M的橫坐標(biāo)為m.①當(dāng)∠MBA=∠BDE時,求點M的坐標(biāo);②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.23.(12分)如圖,在△ABC中,∠ABC=90°,BD為AC邊上的中線.(1)按如下要求尺規(guī)作圖,保留作圖痕跡,標(biāo)注相應(yīng)的字母:過點C作直線CE,使CE⊥BC于點C,交BD的延長線于點E,連接AE;(2)求證:四邊形ABCE是矩形.24.解不等式組:并求它的整數(shù)解的和.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)實數(shù)a在數(shù)軸上的位置,判斷a,﹣a,a2在數(shù)軸上的相對位置,根據(jù)數(shù)軸上右邊的數(shù)大于左邊的數(shù)進行判斷.【詳解】由數(shù)軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數(shù)的大小比較,解答本題的關(guān)鍵是根據(jù)數(shù)軸判斷出a,﹣a,a2的位置.2、C【解析】分析:將一般式配方成頂點式,得出對稱軸方程根據(jù)拋物線與x軸交于兩點,得出求得距離對稱軸越遠(yuǎn),函數(shù)的值越大,根據(jù)判斷出它們與對稱軸之間的關(guān)系即可判定.詳解:∵∴此拋物線對稱軸為∵拋物線與x軸交于兩點,∴當(dāng)時,得∵∴∴故選C.點睛:考查二次函數(shù)的圖象以及性質(zhì),開口向上,距離對稱軸越遠(yuǎn)的點,對應(yīng)的函數(shù)值越大,3、D【解析】分別利用極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法分別分析得出答案.解:由圖表可得:14歲的有5人,故眾數(shù)是14,故選項A正確,不合題意;極差是:16﹣13=3,故選項B正確,不合題意;中位數(shù)是:14.5,故選項C正確,不合題意;平均數(shù)是:(13+14×5+15×4+16×2)÷12≈14.5,故選項D錯誤,符合題意.故選D.“點睛”此題主要考查了極差以及中位數(shù)和眾數(shù)以及平均數(shù)的求法,正確把握相關(guān)定義是解題關(guān)鍵.4、B【解析】
因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應(yīng)用,解本題的關(guān)鍵是把實際問題轉(zhuǎn)化為數(shù)學(xué)問題.5、C【解析】
根據(jù)圓的弦的性質(zhì),連接DC,計算CD的長,再根據(jù)直角三角形的三角函數(shù)計算即可.【詳解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,連接CD,如圖所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=.故選:C.【點睛】本題主要三角函數(shù)的計算,結(jié)合考查圓性質(zhì)的計算,關(guān)鍵在于利用等量替代原則.6、B【解析】
由數(shù)軸上的點A、B分別與實數(shù)﹣1,1對應(yīng),即可求得AB=2,再根據(jù)半徑相等得到BC=2,由此即求得點C對應(yīng)的實數(shù).【詳解】∵數(shù)軸上的點A,B分別與實數(shù)﹣1,1對應(yīng),∴AB=|1﹣(﹣1)|=2,∴BC=AB=2,∴與點C對應(yīng)的實數(shù)是:1+2=3.故選B.【點睛】本題考查了實數(shù)與數(shù)軸,熟記實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系是解決本題的關(guān)鍵.7、C【解析】
由等腰三角形的性質(zhì)可求∠ACD=70°,由平行線的性質(zhì)可求解.【詳解】∵AD=CD,∠1=40°,∴∠ACD=70°,∵AB∥CD,∴∠2=∠ACD=70°,故選:C.【點睛】本題考查了等腰三角形的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題.8、B【解析】
直接利用概率的意義分析得出答案.【詳解】解:因為一枚質(zhì)地均勻的硬幣只有正反兩面,所以不管拋多少次,硬幣正面朝上的概率都是,故選B.【點睛】此題主要考查了概率的意義,明確概率的意義是解答的關(guān)鍵.9、A【解析】解:如圖,連接BE,設(shè)BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關(guān)于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最?。碢在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質(zhì),要靈活運用對稱性解決此類問題.找出P點位置是解題的關(guān)鍵.10、D【解析】解:由對稱軸x=2可知:b=﹣4,∴拋物線y=x2﹣4x+c,令x=﹣1時,y=c+5,x=3時,y=c﹣3,關(guān)于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范圍有實數(shù)根,當(dāng)△=0時,即c=4,此時x=2,滿足題意.當(dāng)△>0時,(c+5)(c﹣3)≤0,∴﹣5≤c≤3,當(dāng)c=﹣5時,此時方程為:﹣x2+4x+5=0,解得:x=﹣1或x=5不滿足題意,當(dāng)c=3時,此時方程為:﹣x2+4x﹣3=0,解得:x=1或x=3此時滿足題意,故﹣5<c≤3或c=4,故選D.點睛:本題主要考查二次函數(shù)與一元二次方程的關(guān)系.理解二次函數(shù)與一元二次方程之間的關(guān)系是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(4,2).【解析】
利用圖象旋轉(zhuǎn)和平移可以得到結(jié)果.【詳解】解:∵△CDO繞點C逆時針旋轉(zhuǎn)90°,得到△CBD′,則BD′=OD=2,∴點D坐標(biāo)為(4,6);當(dāng)將點C與點O重合時,點C向下平移4個單位,得到△OAD′′,∴點D向下平移4個單位.故點D′′坐標(biāo)為(4,2),故答案為(4,2).【點睛】平移和旋轉(zhuǎn):平移是指在同一平面內(nèi),將一個圖形整體按照某個直線方向移動一定的距離,這樣的圖形運動叫做圖形的平移運動,簡稱平移.定義在平面內(nèi),將一個圖形繞一點按某個方向轉(zhuǎn)動一個角度,這樣的運動叫做圖形的旋轉(zhuǎn).這個定點叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角.12、1【解析】
先將分式化簡,然后將x+y=1代入即可求出答案【詳解】當(dāng)x+y=1時,原式=x+y=1,故答案為:1.【點睛】本題考查分式的化簡求值,解題的關(guān)鍵是利用運用分式的運算法則求解代數(shù)式.13、【解析】
首先求得每個外角的度數(shù),然后根據(jù)外角與相鄰的內(nèi)角互為鄰補角即可求解.【詳解】試題分析:正十二邊形的每個外角的度數(shù)是:=30°,則每一個內(nèi)角的度數(shù)是:180°﹣30°=150°.故答案為150°.14、1【解析】
直接根據(jù)內(nèi)角和公式計算即可求解.【詳解】(n﹣2)?110°=1010°,解得n=1.故答案為1.【點睛】主要考查了多邊形的內(nèi)角和公式.多邊形內(nèi)角和公式:.15、-2<k<?!窘馕觥?/p>
由圖可知,∠AOB=45°,∴直線OA的解析式為y=x,聯(lián)立,消掉y得,,由解得,.∴當(dāng)時,拋物線與OA有一個交點,此交點的橫坐標(biāo)為1.∵點B的坐標(biāo)為(2,0),∴OA=2,∴點A的坐標(biāo)為().∴交點在線段AO上.當(dāng)拋物線經(jīng)過點B(2,0)時,,解得k=-2.∴要使拋物線與扇形OAB的邊界總有兩個公共點,實數(shù)k的取值范圍是-2<k<.【詳解】請在此輸入詳解!16、-2【解析】試題分析:根據(jù)題意可得2k+3>2,k<2,解得﹣<k<2.因k為整數(shù),所以k=﹣2.考點:一次函數(shù)圖象與系數(shù)的關(guān)系.三、解答題(共8題,共72分)17、65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-∠EAB-∠ABC=180°-(∠EAB+∠ABC)=180°-×230°=65°.18、(2)(2)7或2.【解析】試題分析:(2)根據(jù)反比例函數(shù)k的幾何意義得到|k|=2,可得到滿足條件的k=6,于是得到反比例函數(shù)解析式為y=;(2)分類討論:當(dāng)以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,再利用反比例函數(shù)圖象上點的坐標(biāo)特征確定M點坐標(biāo)為(2,6),則AB=AM=6,所以t=2+6=7;當(dāng)以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,根據(jù)正方形的性質(zhì)得AB=BC=t-2,則C點坐標(biāo)為(t,t-2),然后利用反比例函數(shù)圖象上點的坐標(biāo)特征得到t(t-2)=6,再解方程得到滿足條件的t的值.試題解析:(2)∵△AOM的面積為2,∴|k|=2,而k>0,∴k=6,∴反比例函數(shù)解析式為y=;(2)當(dāng)以AB為一邊的正方形ABCD的頂點D在反比例函數(shù)y=的圖象上,則D點與M點重合,即AB=AM,把x=2代入y=得y=6,∴M點坐標(biāo)為(2,6),∴AB=AM=6,∴t=2+6=7;當(dāng)以AB為一邊的正方形ABCD的頂點C在反比例函數(shù)y=的圖象上,則AB=BC=t-2,∴C點坐標(biāo)為(t,t-2),∴t(t-2)=6,整理為t2-t-6=0,解得t2=2,t2=-2(舍去),∴t=2,∴以AB為一邊的正方形有一個頂點在反比例函數(shù)y=的圖象上時,t的值為7或2.考點:反比例函數(shù)綜合題.19、(1);(2).【解析】
(1)直接根據(jù)概率公式求解;
(2)先利用樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出第二象限內(nèi)的點的個數(shù),然后根據(jù)概率公式計算點(x,y)位于第二象限的概率.【詳解】(1)正數(shù)為2,所以該球上標(biāo)記的數(shù)字為正數(shù)的概率為;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點有2個,所以點(x,y)位于第二象限的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,求出概率.20、(1)10750;(2);(3)最大利潤為10750元.【解析】
(1)根據(jù)“利潤=銷售總額-總成本”結(jié)合兩種T恤的銷售數(shù)量代入相關(guān)代數(shù)式進行求解即可;(2)根據(jù)題意,分兩種情況進行討論:①0<m<200;②200≤m≤400時,根據(jù)“利潤=銷售總額-總成本”即可求得各相關(guān)函數(shù)關(guān)系式;(3)求出(2)中各函數(shù)最大值,進行比較即可得到結(jié)論.【詳解】(1)∵甲種T恤進貨250件∴乙種T恤進貨量為:400-250=150件故由題意得,;(2)①②;故.(3)由題意,,①,,②,綜上,最大利潤為10750元.【點睛】本題考查了二次函數(shù)的應(yīng)用,找出題中的等量關(guān)系以及根據(jù)題意確定二次函數(shù)的解析式是解題的關(guān)鍵.21、(1)直線的表達(dá)式為,雙曲線的表達(dá)方式為;(2)點P的坐標(biāo)為或【解析】分析:(1)將點B(-1,4)代入直線和雙曲線解析式求出k和m的值即可;(2)根據(jù)直線解析式求得點A坐標(biāo),由S△ACP=AC?|yP|=4求得點P的縱坐標(biāo),繼而可得答案.詳解:(1)∵直線與雙曲線()都經(jīng)過點B(-1,4),,,∴直線的表達(dá)式為,雙曲線的表達(dá)方式為.(2)由題意,得點C的坐標(biāo)為C(-1,0),直線與x軸交于點A(3,0),,∵,,點P在雙曲線上,∴點P的坐標(biāo)為或.點睛:本題主要考查反比例函數(shù)和一次函數(shù)的交點問題,熟練掌握待定系數(shù)法求函數(shù)解析式及三角形的面積是解題的關(guān)鍵.22、(1)(1,4)(2)①點M坐標(biāo)(﹣,)或(﹣,﹣);②m的值為或【解析】
(1)利用待定系數(shù)法即可解決問題;(2)①根據(jù)tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構(gòu)建方程即可解決問題;②因為點M、N關(guān)于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(biāo)(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設(shè)M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當(dāng)點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當(dāng)點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鷹課件語文教學(xué)課件
- 特殊旅客課件教學(xué)課件
- 2024年度建設(shè)工程施工合同工期與質(zhì)量要求
- 2024年度維修保養(yǎng)服務(wù)合同
- 2024年城鄉(xiāng)供水工程特許經(jīng)營合同
- 2024年度設(shè)備采購合同:甲乙雙方在二零二四年就某設(shè)備的采購的詳細(xì)合同條款
- 2024企業(yè)人力資源管理與聘用合同詳細(xì)規(guī)定
- 2024年家長學(xué)生老師三方面協(xié)議
- 2024年國際貨物買賣合同:機械設(shè)備
- 【初中生物】觀察周邊環(huán)境中的生物+課件2024-2025學(xué)年人教版生物七年級上冊
- 辦稅服務(wù)外包投標(biāo)方案(技術(shù)標(biāo))
- 冷庫是有限空間應(yīng)急預(yù)案
- 基于PLC的機械手控制系統(tǒng)設(shè)計畢業(yè)設(shè)計
- 足軟組織感染的護理查房
- 建設(shè)項目竣工環(huán)境保護驗收管理辦法
- 植物學(xué)課件:第二章 種子和幼苗
- 一日生活中幼兒自主探究行為的表現(xiàn)及支持策略研究
- 第8課 用制度體系保證人民當(dāng)家做主
- 軟件測試規(guī)范模板
- 足皮膚感染的護理課件
- 新蘇教版六年級上冊科學(xué)全冊知識點(精編)
評論
0/150
提交評論