2022年四川省德陽市德陽中學數(shù)學九年級第一學期期末達標檢測試題含解析_第1頁
2022年四川省德陽市德陽中學數(shù)學九年級第一學期期末達標檢測試題含解析_第2頁
2022年四川省德陽市德陽中學數(shù)學九年級第一學期期末達標檢測試題含解析_第3頁
2022年四川省德陽市德陽中學數(shù)學九年級第一學期期末達標檢測試題含解析_第4頁
2022年四川省德陽市德陽中學數(shù)學九年級第一學期期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.一元二次方程x2+x﹣1=0的兩根分別為x1,x2,則=()A. B.1 C. D.2.已知兩圓的半徑分別是2和4,圓心距是3,那么這兩圓的位置是()A.內含 B.內切 C.相交 D.外切3.如圖,在中,點在邊上,連接,點在線段上,,且交于點,,且交于點,則下列結論錯誤的是()A. B. C. D.4.某路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當小明到達該路口時,遇到綠燈的概率是()A. B. C. D.5.一個圓柱和一個正方體按如圖所示放置,則其俯視圖為()A. B.C. D.6.如圖,P、Q是⊙O的直徑AB上的兩點,P在OA上,Q在OB上,PC⊥AB交⊙O于C,QD⊥AB交⊙O于D,弦CD交AB于點E,若AB=20,PC=OQ=6,則OE的長為()A.1 B.1.5 C.2 D.2.57.下圖中反比例函數(shù)與一次函數(shù)在同一直角坐標系中的大致圖象是()A. B.C. D.8.一個三角形的兩邊長分別為和,第三邊長是方程的根,則這個三角形的周長為()A. B. C.10或11 D.不能確定9.二次函數(shù)圖象的一部分如圖所示,頂點坐標為,與軸的一個交點的坐標為(-3,0),給出以下結論:①;②;③若、為函數(shù)圖象上的兩點,則;④當時方程有實數(shù)根,則的取值范圍是.其中正確的結論的個數(shù)為()A.1個 B.2個 C.3個 D.4個10.如圖,中,,,.將沿圖示中的虛線剪開,按下面四種方式剪下的陰影三角形與原三角形相似的是()A.①②③ B.②③④ C.①② D.④二、填空題(每小題3分,共24分)11.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.12.若順次連接四邊形ABCD各邊中點所得四邊形為矩形,則四邊形ABCD的對角線AC、BD之間的關系為_____.13.如圖,在△ABC中,點A1,B1,C1分別是BC,AC,AB的中點,A2,B2,C2分別是B1C1,A1C1,A1B1的中點……依此類推,若△ABC的面積為1,則△AnBnCn的面積為__________.14.某種品牌運動服經(jīng)過兩次降價,每件零售價由560元降為315元,已知兩次降價的百分率相同,求每次降價的百分率設每次降價的百分率為x,所列方程是______.15.若二次函數(shù)的圖象經(jīng)過點(3,6),則16.如圖,、是⊙上的兩點,若,是⊙上不與點、重合的任一點,則的度數(shù)為__________.17.如果,那么=.18.在△ABC中,若∠A,∠B滿足|cosA-|+(sinB-)2=0,則∠C=_________.三、解答題(共66分)19.(10分)如圖所示,在矩形OABC中,OA=5,AB=4,點D為邊AB上一點,將△BCD沿直線CD折疊,使點B恰好落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系.(1)求OE的長.(2)求經(jīng)過O,D,C三點的拋物線的解析式.(3)一動點P從點C出發(fā),沿CB以每秒2個單位長的速度向點B運動,同時動點Q從E點出發(fā),沿EC以每秒1個單位長的速度向點C運動,當點P到達點B時,兩點同時停止運動.設運動時間為t秒,當t為何值時,DP=DQ.(4)若點N在(2)中的拋物線的對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使得以M,N,C,E為頂點的四邊形是平行四邊形?若存在,直接寫出M點的坐標;若不存在,請說明理由.20.(6分)我們規(guī)定:方程的變形方程為.例如:方程的變形方程為.(1)直接寫出方程的變形方程;(2)若方程的變形方程有兩個不相等的實數(shù)根,求的取值范圍;(3)若方程的變形方程為,直接寫出的值.21.(6分)某企業(yè)為了解飲料自動售賣機的銷售情況,對甲、乙兩個城市的飲料自動售賣機進行抽樣調查,從兩個城市中所有的飲料自動售賣機中分別抽取16臺,記錄下某一天各自的銷售情況(單位:元)如下:甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述數(shù)據(jù):對銷售金額進行分組,各組的頻數(shù)如下:銷傳金額甲3643乙26ab分析數(shù)據(jù):兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)如下表所示:城市中位數(shù)平均數(shù)眾數(shù)甲C1.845乙402.9d請根據(jù)以上信息,回答下列問題:(1)填空:a=,b=,c=,d=.(2)兩個城市目前共有飲料自動售賣機4000臺,估計日銷售金額不低于40元的數(shù)量約為多少臺?(3)根據(jù)以上數(shù)據(jù),你認為甲、乙哪個城市的飲料自動售賣機銷售情況較好?請說明理由(一條理由即可).22.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).(1)請畫出關于原點對稱的;(2)在軸上求作一點,使的周長最小,請畫出,并直接寫出的坐標.23.(8分)小淇準備利用38m長的籬笆,在屋外的空地上圍成三個相連且面積相等的矩形花園.圍成的花園的形狀是如圖所示的矩形CDEF,矩形AEHG和矩形BFHG.若整個花園ABCD(AB>BC)的面積是30m2,求HG的長.24.(8分)如圖,在△ABC中,AB=AC,O在AB上,以O為圓心,OB為半徑的圓與AC相切于點F,交BC于點D,交AB于點G,過D作DE⊥AC,垂足為E.(1)DE與⊙O有什么位置關系,請寫出你的結論并證明;(2)若⊙O的半徑長為3,AF=4,求CE的長.25.(10分)如圖,反比例函數(shù)的圖象經(jīng)過點,直線與雙曲線交于另一點,作軸于點,軸于點,連接.(1)求的值;(2)若,求直線的解析式;(3)若,其它條件不變,直接寫出與的位置關系.26.(10分)如圖,已知三個頂點的坐標分別為,,(1)請在網(wǎng)格中,畫出線段關于原點對稱的線段;(2)請在網(wǎng)格中,過點畫一條直線,將分成面積相等的兩部分,與線段相交于點,寫出點的坐標;(3)若另有一點,連接,則.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據(jù)根與系數(shù)的關系得到x1+x2=-1,x1?x2=-1,然后把進行通分,再利用整體代入的方法進行計算.【詳解】根據(jù)題意得x1+x2=-1,x1?x2=-1,所以==1,故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數(shù)的關系:若方程兩個為x1,x2,則x1+x2=-,x1?x2=.2、C【分析】先求兩圓半徑的和與差,再與圓心距進行比較,確定兩圓的位置關系.【詳解】解:∵兩圓的半徑分別是2和4,圓心距是3,

則2+4=6,4-2=2,

∴2<3<6,

圓心距介于兩圓半徑的差與和之間,兩圓相交.故選C.【點睛】本題利用了兩圓相交,圓心距的長度在兩圓的半徑的差與和之間求解.3、C【分析】根據(jù)平行線截得的線段對應成比例以及相似三角形的性質定理,逐一判斷選項,即可得到答案.【詳解】∵,,∴,∴A正確,∵,∴,∴B正確,∵?DFG~?DCA,?AEG~?ABD,∴,,∴,∴C錯誤,∵,,∴,∴D正確,故選C.【點睛】本題主要考查平行線截線段定理以及相似三角形的性質定理,掌握平行線截得的線段對應成比例是解題的關鍵.4、D【分析】隨機事件A的概率事件A可能出現(xiàn)的結果數(shù)÷所有可能出現(xiàn)的結果數(shù).【詳解】解:每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當小明到達該路口時,遇到綠燈的概率,故選D.【點睛】本題考查了概率,熟練掌握概率公式是解題的關鍵.5、D【分析】找到從上面看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在俯視圖中.【詳解】解:一個圓柱和一個正方體按如圖所示放置,則其俯視圖為左邊是一個圓,右邊是一個正方形.故選:D.【點睛】本題考查了三視圖的知識,俯視圖是從物體的上面看得到的視圖.6、C【分析】因為OCP和ODQ為直角三角形,根據(jù)勾股定理可得OP、DQ、PQ的長度,又因為CPDQ,兩直線平行內錯角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可證CPE∽DQE,可得,設PE=x,則EQ=14-x,解得x的取值,OE=OP-PE,則OE的長度可得.【詳解】解:∵在⊙O中,直徑AB=20,即半徑OC=OD=10,其中CPAB,QDAB,∴OCP和ODQ為直角三角形,根據(jù)勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CPAB,QDAB,垂直于用一直線的兩直線相互平行,∴CPDQ,且C、D連線交AB于點E,∴∠PCE=∠EDQ,(兩直線平行,內錯角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故,設PE=x,則EQ=14-x,∴,解得x=6,∴OE=OP-PE=8-6=2,故選:C.【點睛】本題考察了勾股定理、相似三角形的應用、兩直線平行的性質、圓的半徑,解題的關鍵在于證明CPE與DQE相似,并得出線段的比例關系.7、B【分析】由于本題不確定k的符號,所以應分k>0和k<0兩種情況分類討論,針對每種情況分別畫出相應的圖象,然后與各選擇比較,從而確定答案.【詳解】(1)當k>0時,一次函數(shù)y=kx﹣k經(jīng)過一、三、四象限,反比例函數(shù)經(jīng)過一、三象限,如圖所示:(2)當k<0時,一次函數(shù)y=kx﹣k經(jīng)過一、二、四象限,反比例函數(shù)經(jīng)過二、四象限.如圖所示:故選:B.【點睛】本題考查了反比例函數(shù)、一次函數(shù)的圖象.靈活掌握反比例函數(shù)的圖象性質和一次函數(shù)的圖象性質是解決問題的關鍵,在思想方法方面,本題考查了數(shù)形結合思想、分類討論思想.8、B【分析】直接利用因式分解法解方程,進而利用三角形三邊關系得出答案.【詳解】∵,

∴,

解得:,

∵一個三角形的兩邊長為3和5,

∴第三邊長的取值范圍是:,即,

則第三邊長為:3,

∴這個三角形的周長為:.

故選:B.【點睛】本題主要考查了因式分解法解方程以及三角形三邊關系,正確掌握三角形三邊關系是解題關鍵.9、D【分析】由二次函數(shù)的圖象可知,再根據(jù)對稱軸為x=-1,得出b=2a<0,進而判斷①,當x=-2時可判斷②正確,然后根據(jù)拋物線的對稱性以及增減性可判斷③,再根據(jù)方程的根與拋物線與x交點的關系可判斷④.【詳解】解:∵拋物線開口向下,交y軸正半軸∴∵拋物線對稱軸為x=-1,∴b=2a<0∴①正確;當x=-2時,位于y軸的正半軸故②正確;點的對稱點為∵當時,拋物線為增函數(shù),∴③正確;若當時方程有實數(shù)根,則需與x軸有交點則二次函數(shù)向下平移的距離即為t的取值范圍,則的取值范圍是,④正確.故選:D.【點睛】本題考查的知識點是二次函數(shù)圖象及其性質,熟悉二次函數(shù)的圖象上點的坐標特征以及求頂點坐標的公式是解此題額關鍵.10、A【分析】根據(jù)相似三角形的判定定理對各項進行逐項判斷即可.【詳解】解:①剪下的三角形與原三角形有兩個角相等,故兩三角形相似;②剪下的三角形與原三角形有兩個角相等,故兩三角形相似;③剪下的三角形與原三角形對應邊成比例,故兩三角形相似;④剪下的三角形與原三角形對應邊不成比例,故兩三角形不相似;綜上所述,①②③剪下的三角形與原三角形相似.故選:A.【點睛】本題考查的知識點是相似三角形的判定定理,熟記定理內容是解此題的關鍵.二、填空題(每小題3分,共24分)11、3【解析】在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出等式解答.【詳解】解:根據(jù)題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關鍵是要知道在同樣條件下,大量重復實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.12、AC⊥BD.【分析】根據(jù)矩形的性質、三角形的中位線定理和平行線的性質即可得出結論.【詳解】解:如圖,設四邊形EFGH是符合題意的中點四邊形,則四邊形EFGH是矩形,∴∠FEH=90°,∵點E、F分別是AD、AB的中點,∴EF是△ABD的中位線,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵點E、H分別是AD、CD的中點,∴EH是△ACD的中位線,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故答案為AC⊥BD.【點睛】本題考查了矩形的性質、三角形的中位線定理和平行線的性質,熟練掌握三角形中位線定理是解此題的關鍵.13、【分析】由于、、分別是的邊、、的中點,就可以得出△,且相似比為,就可求出△,同樣地方法得出△依此類推所以就可以求出的值.【詳解】解:、、分別是的邊、、的中點,、、是的中位線,△,且相似比為,,且,、、分別是△的邊、、的中點,△的△且相似比為,,依此類推,.故答案為:.【點睛】本題考查了三角形中位線定理的運用,相似三角形的判定與性質的運用,解題的關鍵是有相似三角形的性質:面積比等于相似比的平方.14、【分析】根據(jù)降價后的價格=降價前的價格×(1-降價的百分率),則第一次降價后的價格是560(1-x),第二次降價后的價格是560(1-x)2,據(jù)此列方程即可.【詳解】解:設每次降價的百分率為x,由題意得:560(1-x)2=1,故答案為560(1-x)2=1.【點睛】本題考查了由實際問題抽象出一元二次方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程.15、.【詳解】試題分析:根據(jù)點在拋物線上點的坐標滿足方程的關系,由二次函數(shù)的圖象經(jīng)過點(3,6)得:.16、或【分析】根據(jù)題意,可分為兩種情況:點C正在優(yōu)弧和點C在劣弧,分別求出答案即可.【詳解】解:當點C在優(yōu)弧上,則∵,∴;當點C在劣弧上時,則∵,∴,∴;∴的度數(shù)為:40°或140°;故答案為:40°或140°.【點睛】本題考查了圓周角定理,解題的關鍵是掌握同弧所對的圓周角等于圓心角的一半,注意分類討論進行解題.17、【解析】試題分析:本題主要考查的就是比的基本性質.根據(jù)題意可得:=+=+1=+1=.18、75°【解析】根據(jù)絕對值及偶次方的非負性,可得出cosA及sinB的值,從而得出∠A及∠B的度數(shù),利用三角形的內角和定理可得出∠C的度數(shù).【詳解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案為75°.【點睛】本題考查了特殊角的三角函數(shù)值及非負數(shù)的性質,解答本題的關鍵是得出cosA及sinB的值,另外要求我們熟練掌握一些特殊角的三角函數(shù)值.三、解答題(共66分)19、(1)3;(2);(3)t=;(1)存在,M點的坐標為(2,16)或(-6,16)或【分析】(1)由矩形的性質以及折疊的性質可求得CE、CO的長,在Rt△COE中,由勾股定理可求得OE的長;

(2)設AD=m,在Rt△ADE中,由勾股定理列方程可求得m的值,從而得出D點坐標,結合C、O兩點,利用待定系數(shù)法可求得拋物線解析式;

(3)用含t的式子表示出BP、EQ的長,可證明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;(1)由(2)可知C(-1,0),E(0,-3),設N(-2,n),M(m,y),分以下三種情況:①以EN為對角線,根據(jù)對角線互相平分,可得CM的中點與EN的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案;②當EM為對角線,根據(jù)對角線互相平分,可得CN的中點與EM的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案;③當CE為對角線,根據(jù)對角線互相平分,可得CE的中點與MN的中點重合,根據(jù)中點坐標公式,可得m的值,根據(jù)自變量與函數(shù)值的對應關系,可得答案.【詳解】解:(1)∵OABC為矩形,∴BC=AO=5,CO=AB=1.又由折疊可知,,;(2)設AD=m,則DE=BD=1-m,

∵OE=3,∴AE=5-3=2,在Rt△ADE中,AD2+AE2=DE2,∴m2+22=(1-m)2,∴m=,∴D,∵該拋物線經(jīng)過C(-1,0)、O(0,0),∴設該拋物線解析式為,把點D代入上式得,∴a=,∴;(3)如圖所示,連接DP、DQ.由題意可得,CP=2t,EQ=t,則BP=5-2t.當DP=DQ時,在Rt△DBP和Rt△DEQ中,,∴Rt△DBP≌Rt△DEQ(HL),∴BP=EQ,∴5-2t=t,∴t=.故當t=時,DP=DQ;(1)∵拋物線的對稱軸為直線x==-2,

∴設N(-2,n),

又由(2)可知C(-1,0),E(0,-3),設M(m,y),

①當EN為對角線,即四邊形ECNM是平行四邊形時,如圖1,

則線段EN的中點橫坐標為=-1,線段CM的中點橫坐標為,

∵EN,CM互相平分,

∴=-1,解得m=2,

又M點在拋物線上,

∴y=×22+×2=16,

∴M(2,16);

②當EM為對角線,即四邊形ECMN是平行四邊形時,如圖2,

則線段EM的中點橫坐標為,線段CN中點橫坐標為,∵EM,CN互相平分,

∴m=-3,解得m=-6,

又∵M點在拋物線上,,∴M(-6,16);

③當CE為對角線,即四邊形EMCN是平行四邊形時,如圖3,

線段CE的中點的橫坐標為=-2,線段MN的中點的橫坐標為,∵CE與MN互相平分,∴,解得m=-2,

當m=-2時,y=,即M.綜上可知,存在滿足條件的點M,其坐標為(2,16)或(-6,16)或.【點睛】本題是二次函數(shù)的綜合題,涉及待定系數(shù)法求二次函數(shù)解析式、全等三角形的判定和性質、折疊的性質、矩形的性質以及平行四邊形的性質等知識,解題的關鍵是學會利用參數(shù)構建方程解決問題,第(1)小題注意分類討論思想的應用.20、(1);(2);(3)1【分析】(1)根據(jù)題目的規(guī)定直接寫出方程化簡即可.(2)先將方程變形,再根據(jù)判別式解出范圍即可.(3)先將變形前的方程列出來化簡求出a、b、c,相加即可求解.【詳解】(1)由題意得,化簡后得:.(2)若方程的變形方程為,即.由方程的變形方程有兩個不相等的實數(shù)根,可得方程的根的判別式,即.解得(3)變形前的方程為:,化簡后得:x2=0,∴a=1,b=0,c=0,∴a+b+c=1.【點睛】本題考查一元二次方程的運用,關鍵在于讀題根據(jù)規(guī)定變形即可.21、(1)6,2,2,33(2)1875(3)見解析(答案不唯一)【分析】(1)根據(jù)某一天各自的銷售情況求出的值,根據(jù)中位數(shù)的定義求出的值,根據(jù)眾數(shù)的定義求出的值.(2)用樣本估算整體的方法去計算即可.(3)根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的性質判斷即可.【詳解】(1).(2)(臺)故估計日銷售金額不低于40元的數(shù)量約為1875臺.(3)可以推斷出甲城市的飲料自動售貨機銷售情況較好,理由如下:①甲城市飲料自動售貨機銷售金額的平均數(shù)較高,表示甲城市的銷售情況較好;②甲城市飲料自動售貨機銷售金額的眾數(shù)較高,表示甲城市的銷售金額較高;可以推斷出乙城市的飲料自動售貨機銷售情況較好,理由如下:①乙城市飲料自動售貨機銷售金額的中位數(shù)較高,表示乙城市銷售金額高的自動售貨機數(shù)量較多;【點睛】本題考查了概率統(tǒng)計的問題,掌握平均數(shù)、眾數(shù)、中位數(shù)的性質、樣本估算整體的方法是解題的關鍵.22、(1)答案見解析;(2)作圖見解析,P坐標為(2,0)【分析】(1)根據(jù)網(wǎng)格結構找出點、、關于原點的對稱點、、的位置,然后順次連接即可;(2)找出點關于軸的對稱點,連接與軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點的位置,然后連接、并根據(jù)圖象寫出點的坐標即可.【詳解】解:(1)△如圖所示;(2)作點A(1,1)關于x軸的對應點,連接交x軸于點P,則點P為所求的點,連接△APB,則△APB為所求的三角形.此時點P坐標為(2,0)【點睛】本題考查了利用旋轉變換作圖,利用平移變換作圖,軸對稱確定最短路線問題,熟練掌握網(wǎng)格結構準確找出對應點的位置是解題的關鍵.23、的長是【分析】設的長為,將BC,AB表示出來,再利用整個花園面積為30m2列出方程,解之即可.【詳解】解:設的長為,則,由題意得,解得,∵∴不合題意,舍去.答:的長是.【點睛】此題考查一元二次方程的實際運用,掌握長方形的面積計算公式是解決問題的關鍵.24、(1)DE與⊙O相切,證明見解析;(2)CE長度為1【分析】(1)連接OD,如圖,根據(jù)等腰三角形的性質和等量代換可得∠ODB=∠C,進而可得OD∥AC,于是可得OD⊥DE,進一步即可得出結論;(2)連接OF,由切線的性質和已知條件易得四邊形ODEF為矩形,從而可得EF=OD=3,在Rt△AOF中根據(jù)勾股定理可求出AO的長,進而可得AB的長,即為AC的長,再利用線段的和差即可求出結果.【詳解】解:(1)DE與⊙O相切;理由如下:連接OD,如圖,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論