版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要2.函數(shù)的圖象大致為A. B. C. D.3.閱讀如圖的程序框圖,運行相應(yīng)的程序,則輸出的的值為()A. B. C. D.4.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.5.已知函數(shù)的圖象如圖所示,則下列說法錯誤的是()A.函數(shù)在上單調(diào)遞減B.函數(shù)在上單調(diào)遞增C.函數(shù)的對稱中心是D.函數(shù)的對稱軸是6.已知復(fù)數(shù),滿足,則()A.1 B. C. D.57.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.8.已知曲線,動點在直線上,過點作曲線的兩條切線,切點分別為,則直線截圓所得弦長為()A. B.2 C.4 D.9.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.10.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.111.已知實數(shù)x,y滿足,則的最小值等于()A. B. C. D.12.設(shè),命題“存在,使方程有實根”的否定是()A.任意,使方程無實根B.任意,使方程有實根C.存在,使方程無實根D.存在,使方程有實根二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.14.如圖所示,直角坐標(biāo)系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實數(shù)的值為_______.15.函數(shù)的單調(diào)增區(qū)間為__________.16.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當(dāng)x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知分別是內(nèi)角的對邊,滿足(1)求內(nèi)角的大小(2)已知,設(shè)點是外一點,且,求平面四邊形面積的最大值.18.(12分)已知等差數(shù)列{an}的前n項和為Sn,且(1)求數(shù)列{a(2)求數(shù)列{1Sn}的前19.(12分)已知函數(shù).(1)當(dāng)時,判斷在上的單調(diào)性并加以證明;(2)若,,求的取值范圍.20.(12分)已知是遞增的等比數(shù)列,,且、、成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),,求數(shù)列的前項和.21.(12分)如圖,在三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=C1C=1,M,N分別是AB,A1C的中點.(1)求證:直線MN⊥平面ACB1;(2)求點C1到平面B1MC的距離.22.(10分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,當(dāng)不處罰時,有80人會闖紅燈,處罰時,得到如表數(shù)據(jù):處罰金額(單位:元)5101520會闖紅燈的人數(shù)50402010若用表中數(shù)據(jù)所得頻率代替概率.(1)當(dāng)罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現(xiàn)對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?
2023學(xué)年模擬測試卷參考答案(含詳細(xì)解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【答案解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價關(guān)系,即可得出。【題目詳解】設(shè)對應(yīng)的集合是,由解得且對應(yīng)的集合是,所以,故是的必要不充分條件,故選B。【答案點睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。2.D【答案解析】
由題可得函數(shù)的定義域為,因為,所以函數(shù)為奇函數(shù),排除選項B;又,,所以排除選項A、C,故選D.3.C【答案解析】
根據(jù)給定的程序框圖,計算前幾次的運算規(guī)律,得出運算的周期性,確定跳出循環(huán)時的n的值,進而求解的值,得到答案.【題目詳解】由題意,,第1次循環(huán),,滿足判斷條件;第2次循環(huán),,滿足判斷條件;第3次循環(huán),,滿足判斷條件;可得的值滿足以3項為周期的計算規(guī)律,所以當(dāng)時,跳出循環(huán),此時和時的值對應(yīng)的相同,即.故選:C.【答案點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出問題,其中解答中認(rèn)真審題,得出程序運行時的計算規(guī)律是解答的關(guān)鍵,著重考查了推理與計算能力.4.C【答案解析】
設(shè)過點作圓的切線的切點為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【題目詳解】設(shè)過點作圓的切線的切點為,,所以是中點,,,.故選:C.【答案點睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計算能力,屬于中檔題.5.B【答案解析】
根據(jù)圖象求得函數(shù)的解析式,結(jié)合余弦函數(shù)的單調(diào)性與對稱性逐項判斷即可.【題目詳解】由圖象可得,函數(shù)的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數(shù)在上單調(diào)遞減,當(dāng)時,函數(shù)在上單調(diào)遞減,故A正確;令,得,故函數(shù)在上單調(diào)遞增.當(dāng)時,函數(shù)在上單調(diào)遞增,故B錯誤;令,得,故函數(shù)的對稱中心是,故C正確;令,得,故函數(shù)的對稱軸是,故D正確.故選:B.【答案點睛】本題考查由圖象求余弦型函數(shù)的解析式,同時也考查了余弦型函數(shù)的單調(diào)性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.6.A【答案解析】
首先根據(jù)復(fù)數(shù)代數(shù)形式的除法運算求出,求出的模即可.【題目詳解】解:,,故選:A【答案點睛】本題考查了復(fù)數(shù)求模問題,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.7.D【答案解析】
以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進而求得,由平面向量的數(shù)量積可得答案.【題目詳解】如圖建系,則,,,由,易得,則.故選:D【答案點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.8.C【答案解析】
設(shè),根據(jù)導(dǎo)數(shù)的幾何意義,求出切線斜率,進而得到切線方程,將點坐標(biāo)代入切線方程,抽象出直線方程,且過定點為已知圓的圓心,即可求解.【題目詳解】圓可化為.設(shè),則的斜率分別為,所以的方程為,即,,即,由于都過點,所以,即都在直線上,所以直線的方程為,恒過定點,即直線過圓心,則直線截圓所得弦長為4.故選:C.【答案點睛】本題考查直線與圓位置關(guān)系、直線與拋物線位置關(guān)系,拋物線兩切點所在直線求解是解題的關(guān)鍵,屬于中檔題.9.C【答案解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.10.B【答案解析】
根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.11.D【答案解析】
設(shè),,去絕對值,根據(jù)余弦函數(shù)的性質(zhì)即可求出.【題目詳解】因為實數(shù),滿足,設(shè),,,恒成立,,故則的最小值等于.故選:.【答案點睛】本題考查了橢圓的參數(shù)方程、三角函數(shù)的圖象和性質(zhì),考查了運算能力和轉(zhuǎn)化能力,意在考查學(xué)生對這些知識的理解掌握水平.12.A【答案解析】
只需將“存在”改成“任意”,有實根改成無實根即可.【題目詳解】由特稱命題的否定是全稱命題,知“存在,使方程有實根”的否定是“任意,使方程無實根”.故選:A【答案點睛】本題考查含有一個量詞的命題的否定,此類問題要注意在兩個方面作出變化:1.量詞,2.結(jié)論,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.(1,)【答案解析】
在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【題目詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【答案點睛】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).14.【答案解析】
根據(jù)圖示分析出、、的坐標(biāo)表示,然后根據(jù)坐標(biāo)形式下向量的數(shù)量積為零計算出的取值.【題目詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【答案點睛】本題考查向量的坐標(biāo)表示以及坐標(biāo)形式下向量的數(shù)量積運算,難度較易.已知,若,則有.15.【答案解析】
先求出導(dǎo)數(shù),再在定義域上考慮導(dǎo)數(shù)的符號為正時對應(yīng)的的集合,從而可得函數(shù)的單調(diào)增區(qū)間.【題目詳解】函數(shù)的定義域為.,令,則,故函數(shù)的單調(diào)增區(qū)間為:.故答案為:.【答案點睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用,注意先考慮函數(shù)的定義域,再考慮導(dǎo)數(shù)在定義域上的符號,本題屬于基礎(chǔ)題.16.130.15.【答案解析】
由題意可得顧客需要支付的費用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【題目詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設(shè)顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【答案點睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學(xué)的應(yīng)用意識?數(shù)學(xué)式子變形與運算求解能力,以實際生活為背景,創(chuàng)設(shè)問題情境,考查學(xué)生身邊的數(shù)學(xué),考查學(xué)生的數(shù)學(xué)建模素養(yǎng).三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【答案解析】
(1)首先利用誘導(dǎo)公式及兩角和的余弦公式得到,再由同角三角三角的基本關(guān)系得到,即可求出角;(2)由(1)知,是正三角形,設(shè),由余弦定理可得:,則,得到,再利用輔助角公式化簡,最后由正弦函數(shù)的性質(zhì)求得最大值;【題目詳解】解:(1)由,,,,,,,;(2)由(1)知,是正三角形,設(shè),由余弦定理得:,,,所以當(dāng)時有最大值【答案點睛】本題考查同角三角函數(shù)的基本關(guān)系,三角恒等變換公式的應(yīng)用,三角形面積公式的應(yīng)用,以及正弦函數(shù)的性質(zhì),屬于中檔題.18.(1)an=2n【答案解析】
(1)先設(shè)出數(shù)列的公差為d,結(jié)合題中條件,求出首項和公差,即可得出結(jié)果.(2)利用裂項相消法求出數(shù)列的和.【題目詳解】解:(1)設(shè)公差為d的等差數(shù)列{an}且a1+a則有:a1解得:a1=3,所以:a(2)由于:an所以:Sn則:1S則:Tn=1【答案點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應(yīng)用,裂項相消法在數(shù)列求和中的應(yīng)用,主要考查學(xué)生的運算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.19.(1)在為增函數(shù);證明見解析(2)【答案解析】
(1)令,求出,可推得,故在為增函數(shù);(2)令,則,由此利用分類討論思想和導(dǎo)數(shù)性質(zhì)求出實數(shù)的取值范圍.【題目詳解】(1)當(dāng)時,.記,則,當(dāng)時,,.所以,所以在單調(diào)遞增,所以.因為,所以,所以在為增函數(shù).(2)由題意,得,記,則,令,則,當(dāng)時,,,所以,所以在為增函數(shù),即在單調(diào)遞增,所以.①當(dāng),,恒成立,所以為增函數(shù),即在單調(diào)遞增,又,所以,所以在為增函數(shù),所以所以滿足題意.②當(dāng),,令,,因為,所以,故在單調(diào)遞增,故,即.故,又在單調(diào)遞增,由零點存在性定理知,存在唯一實數(shù),,當(dāng)時,,單調(diào)遞減,即單調(diào)遞減,所以,此時在為減函數(shù),所以,不合題意,應(yīng)舍去.綜上所述,的取值范圍是.【答案點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和零點及不等式恒成立等問題,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想,考查了學(xué)生的邏輯推理和運算求解能力,屬于難題.20.(Ⅰ);(Ⅱ).【答案解析】
(Ⅰ)設(shè)等比數(shù)列的公比為,根據(jù)題中條件求出的值,結(jié)合等比數(shù)列的通項公式可得出數(shù)列的通項公式;(Ⅱ)求得,然后利用裂項相消法可求得.【題目詳解】(Ⅰ)設(shè)數(shù)列的公比為,由題意及,知.、、成等差數(shù)列成等差數(shù)列,,,即,解得或(舍去),.數(shù)列的通項公式為;(Ⅱ),.【答案點睛】本題考查等比數(shù)列通項的求解,同時也考查了裂項求和法,考查計算能力,屬于基礎(chǔ)題.21.(1)證明見解析.(2)【答案解析】
(1)連接AC1,BC1,結(jié)合中位線定理可證MN∥BC1,再結(jié)合線面垂直的判定定理和線面垂直的性質(zhì)分別求證AC⊥BC1,BC1⊥B1C,即可求證直線MN⊥平面ACB1;(2)作交于點,通過等體積法,設(shè)C1到平面B1CM的距離為h,則有,結(jié)合幾何關(guān)系即可求解【題目詳解】(1)證明:連接AC1,BC1,則N∈AC1且N為AC1的中點;∵M是AB的中點.所以:MN∥BC1;∵A1A⊥平面ABC,AC?平面ABC,∴A1A⊥AC,在三棱柱ABC﹣A1B1C1中,AA1∥CC,∴AC⊥CC1,∵∠ACB=90°,BC∩CC1=C,BC?平面BB1C1C,CC1?平面BB1C1C,∴AC⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人與銀行消費貸款合同(二零二五版)4篇
- 建設(shè)工程勘察設(shè)計合同(2篇)
- 二零二五年度智能設(shè)備模具定制加工合同范本4篇
- 音樂核心素養(yǎng)課程設(shè)計
- 二零二五年度門診藥品銷售權(quán)承包合作協(xié)議3篇
- 配電柜拆除施工方案
- 造價管理課程設(shè)計
- 二零二五年度孟玲與張偉離婚協(xié)議及共同財產(chǎn)分割執(zhí)行方案4篇
- 二零二五版電子商務(wù)04安全風(fēng)險評估與改進合同2篇
- 腳手架加固施工方案
- 小學(xué)數(shù)學(xué)六年級解方程練習(xí)300題及答案
- 電抗器噪聲控制與減振技術(shù)
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
- 消費醫(yī)療行業(yè)報告
- 品學(xué)課堂新范式
- GB/T 1196-2023重熔用鋁錠
- 運輸行業(yè)員工崗前安全培訓(xùn)
- 公路工程安全風(fēng)險辨識與防控手冊
- 幼兒園教師培訓(xùn):計數(shù)(數(shù)數(shù))的核心經(jīng)驗
- 如何撰寫和發(fā)表高水平的科研論文-good ppt
評論
0/150
提交評論