版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.已知函數(shù),下列區(qū)間中包含零點的區(qū)間是()A. B.C. D.2.已知,,,則a、b、c大小關(guān)系為()A. B.C. D.3.函數(shù)f(x)=+的定義域為()A. B.C. D.4.若,,,,則()A. B.C. D.5.已知函數(shù)是定義域為的奇函數(shù),且滿足,當時,,則A.4 B.2C.-2 D.-46.將函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍,再向右平移個單位,得到的函數(shù)的一個對稱中心是A. B.C. D.7.已知向量,,若,則()A. B.C.2 D.38.,表示不超過的最大整數(shù),十八世紀,函數(shù)被“數(shù)學王子”高斯采用,因此得名高斯函數(shù),人們更習慣稱之為“取整函數(shù)”,則()A.0 B.1C.7 D.89.若,則關(guān)于的不等式的解集是()A. B.或C.或 D.10.若,則的值是()A. B.C. D.1二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11.下列四個命題中:①若奇函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增②若偶函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增;③若函數(shù)為奇函數(shù),那么函數(shù)的圖象關(guān)于點中心對稱;④若函數(shù)為偶函數(shù),那么函數(shù)的圖象關(guān)于直線軸對稱;正確的命題的序號是___________.12.如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)≥log2(x+1)的解集是________13.已知一元二次不等式對一切實數(shù)x都成立,則k的取值范圍是___________.14.某工廠產(chǎn)生的廢氣經(jīng)過濾后排放,過濾過程中廢氣的污染物含量P(單位:mg/L)與時間t(單位:h)間的關(guān)系為,其中,是正的常數(shù).如果在前5h消除了10%的污染物,那么10h后還剩百分之幾的污染物________.15.已知冪函數(shù)的圖象過點,則___________.三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16.設(shè)函數(shù)f(1)求函數(shù)fx(2)求函數(shù)fx(3)求函數(shù)fx在閉區(qū)間0,π217.已知圓經(jīng)過(2,5),(﹣2,1)兩點,并且圓心在直線yx上.(1)求圓的標準方程;(2)求圓上的點到直線3x﹣4y+23=0的最小距離.18.如圖,在正方體中,點分別是棱的中點.求證:(1)平面;(2)平面19.某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,A產(chǎn)品的利潤y與投資x成正比,其關(guān)系如圖(1)所示;B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,其關(guān)系如圖(2)所示(注:利潤y與投資x的單位均為萬元)(1)分別求A,B兩種產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式;(2)已知該企業(yè)已籌集到200萬元資金,并將全部投入A,B兩種產(chǎn)品的生產(chǎn)①若將200萬元資金平均投入兩種產(chǎn)品的生產(chǎn),可獲得總利潤多少萬元?②如果你是廠長,怎樣分配這200萬元資金,可使該企業(yè)獲得總利潤最大?其最大利潤為多少萬元?20.已知集合,,.(1)求,;(2)若,求實數(shù)的取值范圍.21.已知角的頂點在坐標原點,始邊與軸的非負半軸重合,終邊經(jīng)過點.(1)求;(2)求的值.
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、C【解析】根據(jù)函數(shù)零點的存在性定理,求得,即可得到答案.【詳解】由題意,函數(shù),易得函數(shù)為單調(diào)遞減函數(shù),又由,所以,根據(jù)零點的存在定理,可得零點的區(qū)間是.故選:C.2、C【解析】根據(jù)對數(shù)函數(shù)以及指數(shù)函數(shù)單調(diào)性比較大小即可.【詳解】則故選:C3、C【解析】根據(jù)分母部位0,被開方數(shù)大于等于0構(gòu)造不等式組,即可解出結(jié)果【詳解】利用定義域的定義可得,解得,即,故選C【點睛】本題考查定義域的求解,需掌握:分式分母不為0,②偶次根式被開方數(shù)大于等于0,③對數(shù)的真數(shù)大于0.4、C【解析】由于,所以先由已知條件求出,的值,從而可求出答案【詳解】,因為,,所以,,因為,,所以,,則故選:C【點睛】此題考查同角三角函數(shù)的關(guān)系的應(yīng)用,考查兩角差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.5、B【解析】先利用周期性將轉(zhuǎn)化為,再利用奇函數(shù)的性質(zhì)將轉(zhuǎn)化成,然后利用時的函數(shù)表達式即可求值.【詳解】由可知,為周期函數(shù),周期為,所以,又因為為奇函數(shù),有,因為,所以,答案為B.【點睛】主要考查函數(shù)的周期性,奇偶性的應(yīng)用,屬于中檔題.6、A【解析】由函數(shù)的圖象上各點的縱坐標不變,橫坐標伸長到原來的3倍得到,向右平移個單位得到,將代入得,所以函數(shù)的一個對稱中心是,故選A7、A【解析】先計算的坐標,再利用可得,即可求解.【詳解】,因為,所以,解得:,故選:A8、D【解析】根據(jù)函數(shù)的新定義求解即可.【詳解】由題意可知4-(-4)=8.故選:D.9、D【解析】判斷出,再利用一元二次不等式的解法即可求解.【詳解】因,所以,即.所以,解得.故選:D【點睛】本題考查了一元二次不等式的解法,考查了基本運算求解能力,屬于簡單題.10、D【解析】由求出a、b,表示出,進而求出的值.詳解】由,.故選:D二、填空題(本大題共5小題,請把答案填在答題卡中相應(yīng)題中橫線上)11、②③【解析】根據(jù)奇函數(shù)、偶函數(shù)的性質(zhì)可判斷①②,結(jié)合平移變換可判斷③④.【詳解】奇函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相同的單調(diào)性,偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相反的單調(diào)性,故①錯誤,②正確;因為函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,的圖象可以由的圖象向右平移1個單位長度得到,故的圖象關(guān)于點對稱,故③正確;函數(shù)的圖象可以由函數(shù)的圖象向左平移1個單位長度得到,因為為偶函數(shù),圖象關(guān)于y軸對稱,所以的圖象關(guān)于直線軸對稱,故④錯誤.故答案為:②③12、{x|-1<x≤1}【解析】先作函數(shù)圖象,再求交點,最后根據(jù)圖象確定解集.【詳解】令g(x)=y(tǒng)=log2(x+1),作出函數(shù)g(x)的圖象如圖由得∴結(jié)合圖象知不等式f(x)≥log2(x+1)的解集為{x|-1<x≤1}【點睛】本題考查函數(shù)圖象應(yīng)用,考查基本分析求解能力.13、【解析】由題意,函數(shù)的圖象在x軸上方,故,解不等式組即可得k的取值范圍【詳解】解:因為不等式為一元二次不等式,所以,又一元二次不等式對一切實數(shù)x都成立,所以有,解得,即,所以實數(shù)k的取值范圍是,故答案為:.14、81%【解析】根據(jù)題意,利用函數(shù)解析式,直接求解.【詳解】由題意可知,,所以.所以10小時后污染物含量,即10小時后還剩81%的污染物.故答案為:81%15、##0.25【解析】設(shè),代入點求解即可.【詳解】設(shè)冪函數(shù),因為的圖象過點,所以,解得所以,得.故答案為:三、解答題(本大題共6小題.解答應(yīng)寫出文字說明,證明過程或演算步驟.)16、(1)π(2)π3+kπ,(3)fx在0,π2內(nèi)的最大值為【解析】(1)利用三角恒等變換化簡可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小問1詳解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函數(shù)f(x)的最小正周期為T=2π2=【小問2詳解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函數(shù)f(x)的單調(diào)遞減間為π3+kπ,【小問3詳解】因為0≤x≤π2,-π6≤2x-π6≤當2x-π6=π2時,即x=π3時,f(x17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圓心的坐標和圓的半徑,即得圓的標準方程;(2)求出圓心到直線3x﹣4y+23=0的距離即得解.【詳解】(1)A(2,5),B(﹣2,1)中點為(0,3),經(jīng)過A(2,5),B(﹣2,1)的直線的斜率為,所以線段AB中垂線方程為,聯(lián)立直線方程y解得圓心坐標為(2,1),所以圓的半徑.所以圓的標準方程為(x﹣2)2+(y﹣1)2=16.(2)圓的圓心為(2,1),半徑r=4.圓心到直線3x﹣4y+23=0的距離d.則圓上的點到直線3x﹣4y+23=0的最小距離為d﹣r=1.【點睛】本題主要考查圓的標準方程的求法和圓上的點到直線的距離的最值的求法,意在考查學生對這些知識的理解掌握水平.18、(1)證明見解析(2)證明見解析【解析】(1)易證得四邊形為平行四邊形,可知,由線面平行的判定可得結(jié)論;(2)由正方形性質(zhì)和線面垂直性質(zhì)可證得,,由線面垂直的判定可得平面,由可得結(jié)論.【小問1詳解】分別為的中點,,,且,四邊形為平行四邊形,,又平面,平面,平面.【小問2詳解】四邊形為正方形,;平面,平面,,又,平面,19、(1)A產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式為:;B產(chǎn)品的利潤y關(guān)于投資x的函數(shù)解析式為:.(2)①萬元;②當投入B產(chǎn)品的資金為萬元,投入A產(chǎn)品的資金為萬元,該企業(yè)獲得的總利潤最大,其最大利潤為萬元.【解析】(1)利用待定系數(shù)法,結(jié)合函數(shù)圖象上特殊點,運用代入法進行求解即可;(2)①:利用代入法進行求解即可;②利用換元法,結(jié)合二次函數(shù)的單調(diào)性進行求解即可.【小問1詳解】因為A產(chǎn)品的利潤y與投資x成正比,所以設(shè),由函數(shù)圖象可知,當時,,所以有,所以;因為B產(chǎn)品的利潤y與投資x的算術(shù)平方根成正比,所以設(shè),由函數(shù)圖象可知:當時,,所以有,所以;【小問2詳解】①:將200萬元資金平均投入兩種產(chǎn)品的生產(chǎn),所以A產(chǎn)品的利潤為,B產(chǎn)品的利潤為,所以獲得總利潤為萬元;②:設(shè)投入B產(chǎn)品的資金為萬元,則投入A產(chǎn)品的資金為萬元,設(shè)企業(yè)獲得的總利潤為萬元,所以,令,所以,當時,即當時,有最大值,最大值為,所以當投入B產(chǎn)品的資金為萬元,投入A產(chǎn)品的資金為萬元
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年KTV特色主題活動策劃與執(zhí)行合同3篇
- 2025版攤鋪機租賃及施工質(zhì)量保障合同范本6篇
- 個人健身教練合同:2024版專業(yè)輔導合同書
- 2025年度臨時用工勞務(wù)合同編制指南范本2篇
- 二零二五年度光伏電站運維人工勞務(wù)合同范本3篇
- 2025年木材市場分析與預(yù)測合作合同范本
- 二零二五版木門行業(yè)展會參展與推廣服務(wù)合同4篇
- 二零二五年度數(shù)字貨幣技術(shù)研發(fā)與應(yīng)用合同集2篇
- 2025年戶外健身路徑欄桿設(shè)施采購合同3篇
- 2025年度獵頭服務(wù)人才引進與培養(yǎng)合作協(xié)議5篇
- 《電影之創(chuàng)戰(zhàn)紀》課件
- 社區(qū)醫(yī)療抗菌藥物分級管理方案
- 開題報告-鑄牢中華民族共同體意識的學校教育研究
- 《醫(yī)院標識牌規(guī)劃設(shè)計方案》
- 公司2025年會暨員工團隊頒獎盛典攜手同行共創(chuàng)未來模板
- 夜市運營投標方案(技術(shù)方案)
- 電接點 水位計工作原理及故障處理
- 國家職業(yè)大典
- 2024版房產(chǎn)代持協(xié)議書樣本
- 公眾號運營實戰(zhàn)手冊
- 科研倫理與學術(shù)規(guī)范(研究生)期末試題庫及答案
評論
0/150
提交評論