




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Agametheory-basedmodelforproductportfoliomanagementinacompetitivemarket
A.Sadeghi,M.Zandieh
ExpertSystemswithApplications,2010Agametheory-basedmodelforStructureIntroductionLiteraturereviewDescriptionofthePPMproblemProblemformulationExampleConclusionsandfutureworkStructureIntroduction1.IntroductionConsumers,industrialmanagers,andsalesandmarketingpeople,alldemandproductsthatimprovetheirlifestylesortogainanedgeoverthecompetition.So,productportfolios
areinterestingformanypeople.Butunlimitedproductvarietyisnotawaytobesuccessful;therehastobeanoptimum.ItistrueformostcompaniesthattheParetoruleapplies:80%ofthesalesand/orpro?ts
comefrom20%oftheproducts.Itisevidentthatasingleproductcannot1.IntroductionConsumers,indu
ful?llthemanufacturerneedsandonthe
otherhand,fordiversitythereexistslimitation.Intoday’shighlycompetitiveenvironment,determiningan
optimalproductportfolioisveryimportantforthesurvivalofa?rm.Optimalproductportfoliohasreceivedconsiderableattention,becausetheratesoffailureofnewproductportfolioandtheirassociatedlossesareveryhigh.Thewhole
product
component
information(產(chǎn)品構建信息),
engineeringful?llthemanufacturerne
portfoliodecision(工程組合決策)isverycrucialfortheprogressofa?rm
,becauseitisverycostlyanddifficulttochange.Thekeyquestionsare,whatthebestproductportfoliois,andhowmanufacturercan
?ndit.Productportfoliomanagement(PPM)is
ageneralbusinessconceptthatanalyzetheproductionability(生產(chǎn)能力)
andmarketpotential,simultaneously,andthendeterminethebestsetofproductsto
offer.PPMisdevelopedtodirectaproductanditsdiversityportfoliodecision(工程組合決策
includingnotonlyattributes(屬性),levels,andprice’s,butalsoanalysisresults,environmental
requirements(環(huán)保需求),manufacturingprocedures(生產(chǎn)流程),productperformanceinformation(產(chǎn)品性能信息),and
etc.ThereforePPMhasbeenclassifiedasacombinatorialoptimizationproblem.Eachcompanystrivesfortheoptimalityofitsproductofferingsthroughvariouscombinationsofproducts.ThePPMproblemmaydevelopfromtwoperspectives:(I)For
attracttheopinionofcustomersincludingnotonlyattribu
intargetmarkets.(II)Forreduce
themanufactureengineeringcosts.Firstistheproblemofmarketingmanagers,andsecondistheproblemofproducer.Whenbothofthemcomposewitheachotherasreflecttoutilityofcostumersandengineeringcosts,thisproblembecomestomisslinkbetweensaleandproductionchain.JiaoandZhang(2005)considerthecustomer–engineering
interactioninproductportfolioplanning,whichaims
tocreateproduct
familyintargetmarkets.(II)Fospeci?cations(產(chǎn)品族/系列規(guī)格)foratargetmarketsegment,andproposedamaximizingsurplussharemodel(最大剩余份額模型).Incompetitiveenvironment,wedetermineourproductportfoliowithregardtoproductsthatofferbycompetitors,whilethecompetitorsmanagetheirproductportfoliosinregardtoourproducts.Gametheorycanbeusedtomodelthisproblem.Theproposed
modelconstructsproductportfoliospeci?cations(產(chǎn)品族/系列規(guī)格)fo
basedoncustomer–engineeringinteractionmodelinproductportfolioplanningwhichis
developedbyJiaoandZhang.PresentpaperextendspreviousworksinPPMwithregardtocustomer–engineeringconcerns
andcompetitiveenvironment.Itisnotforany
specificproduct,anditcanbeappliedtoadiversityofproductsorservices.objective:developagametheory-basedmodelasaprocedureof?ndingoptimalproductportfolio.basedoncustomer–engineer2.LiteraturereviewAPPMisde?nedasadecisionmakingthatoptimizessomecriteria,suchas
marketshare.Themaincontributionofthemostresearchesin
PPMissummarizedinfollowingissues:
1)Generatingdesign
alternativesviamulti-objective
optimization(通過多目標優(yōu)化生成設計方案).
2)Accountingforuncertaintyandcompetitionwhenestimatingtheachievementofbusinessgoals.
3)Applyingmeta-heuristicalgorithms(元啟發(fā)式算法)
2.LiteraturereviewAPPMisd
tosolveacombinatorial
problemduringtheproductlinedesign.ThedevelopmentofalgorithmsHeuristic(identifyproductpro?leproductlinedesign)
algorithms
improvedheuristicalgorithms
geneticalgorithms.Thedevelopmentofmodels1)JiaoandZhangproposedamodelto
addresstheproductportfolioplanningproblem,itconsiderscustomerpreferences,choiceprobabilitiesandtosolveacombinatorialp
platformbasedproductcosting.Also,ageneticalgorithmprocedureisapplied.
2)AiyoshiandMaki
proposedagameproblemundertheconstraintsofallocationofproductandmarketsharesimultaneously.Theirresearchisconsideredseveralmanufacturersinoligopolymarket(寡頭壟斷市場).Thisproposedmodel,ontheonehandhadthecompetitivecircumstance,butontheotherhand,didnothas
detailssuchaslargevarietyofcustomers'preferences,customer–engineeringconcerns,etc.platformbasedproductcos
3)modelinthispaper
considersbothdetailsandcompetitivecircumstance.3)modelinthispapercon3.DescriptionofthePPMproblemConsideringthe?rmcapabilitiestoproduceproducts,asetofproductportfolioshavebeenidenti?ed.Eachproducthascertaindesirabilitybetweencustomers.Morespeci?cally,weconsiderascenarioinwhichasetofproducts,havebeenidenti?ed,giventhatthemanufacturer(m)hasthecapabilities(bothdesignandproduction)toproducealltheseproducts,..Aproductportfolio,,isasetconsistingofsomeselectedproduct.Combined
withtheproducts,asetofproductportfoliosarecreated,.
相關參數(shù)3.DescriptionofthePPMprobForexample,ifmanufacturermcanproduce3product,7productportfolioareavailable:(=7)
Everyproduct,
,isassociatedwithcertainengineeringcosts,denotedas.Therearemultiplemarketsegments,S={s1,...,sg,...,sG},eachcontaininghomogeneouscustomers,withade?nitesize,Qg.Thecustomer–engineeringinteractionisForexample,ifmanufacturermembodiedinthedecisionsassociatedwithcustomers’choicesofdifferentproducts.Variouscustomerpreferencesondiverseproductsarerepresentedbyrespectiveutilities,(utilityofthegthsegmentforthenthproductofmthmanufacturer).Productdemandsormarketshares,(marketshareofthegthsegment
forthenthproductofmthmanufacturer),aredescribedbytheprobabilitiesofcustomers’choosingproducts.Customerschooseaproductbasedonthesurplusembodiedinthedecisions
buyerrule.Theyhave
theoptionofnotbuyinganyproductsorbuyingcompetitors’products.Weassumethatcompetitorsrespondtothemanufacturer’smoves,meaningthat,thecompetitionreactbyintroducingnewproducts.buyerrule.Theyhavetheo4.ProblemformulationThepresentpaperconsidersamarketwithGsegments,
S={s1,...,sg,...,sG},and2manufacturersthateachofthemcan
offerNmproducts,
andJmproductportfolios,
.Thisgivesthebimatrix-game(雙矩陣對策)
problemwith2playersandJmstrategyforeach,(m=1or2).Thepayoffforeachplayerwillofcoursedependonthecombinedactionsofbothplayers.Apayoffmatrixshowswhatpayoff
eachplayerwillreceiveat4.ProblemformulationThepres
theoutcomeofthegame.Forplayer
m(m=1or2),thepayoffmatrix,Fm,isasfollows:theoutcomeofthegame.FInsummary,aJ1
×J2–bimatrixgameisplayedbytwoplayers,player1andplayer2.Player1hasafinitesetandplayer2hasa?nite
set
of
purestrategies.Thepayoffmatrixes[f1(
)],
ofplayer1
and
ofplayer2aredenotedbyF1andF2respectively.Thisgameisdenotedby(F1,F2).Nowthegame(F1,F2)isplayedasfollows.Players1and2choose,independentofeachother,astrategyInsummary,aJ1×J2–bimatr
andrespectively.Here
canbeseenastheprobabilitythatplayer1(2)chooseshis–throw(–thcolumn).The(expected)payoffforplayer1isx1F1x2andtheexpectedpayofftoplayer2isx1F2x2.Astrategypair()isanequilibriumforthegame(F1,F2)ifandThesetofallequilibriaforthegame(F1,F2)isdenotedbyE(F1,F2).ByatheoremofNashthissetisnon-emptyforallbimatrix-games(Nash,1950).Somemethodsforcalculatingpayoffmatrixarrays,,arethere(seeSection2).WeusedthefunctionthatproposedbyJiaoandZhang(2005).Thisfunctionisbasedoncustomer-engineeringinteractionmodelinPPM.Thisisasfollows:ThesetofallequilibriaforEq.(3)istheexpectedsharedsurplusbyofferingaproductportfolio,consistingofproducts,tocustomersegments,sg,eachwithsizeQg.Themarketpotentials,Qg,canbegivenexogenouslyattheoutsetorestimatedthroughavarietyoftechniquesbasedonhistoricaldataortestmarkets.Theutilityofthegthsegmentforthenthproductofmthmanufacturerisdenotedas.ThismodelassumesthatcustomersonlychooseaEq.(3)istheexpectedshared
productwithapositivesurplus.Thechoiceprobability,,
thatacustomerorasegment,sg,choosesaproduct,,withNcomcompetingproducts,isdefinedasfollows:whereuisascalingparameter(尺度參數(shù)).Accordingtomatrix(1)andEq.(3),letthefunctionbedefinedbyproductwithapositivesu競爭市場中產(chǎn)品組合管理博弈模型講義5.ExampleInthissection,asimpleexampletousetheproposedmodelispresented.Forsimplicity,weconsideramarketwithtwocompetitor(M=2),andfourdifferentproducts(Nm=4)foreach.Feasiblestrategies,isdefinedasfollows:5.ExampleInthissection,as產(chǎn)品組合數(shù)=24-1=15???產(chǎn)品組合數(shù)=24-1=15???Threesegmentsareidentified,i.e.,s1,s2,ands3.Q1,Q2,andQ3areassumed0.2,0.3and0.5,respectively.Table1showstheutilitiesofthreesegmentstoeveryproduct()andcostofeach().Also,scalingparameter(u)issupposed0.8.Therefore,2payoffmatrixesF1andF2formedformanufacturer1and2,separately.Thisgameandobtaineddatafromexpectedsharedsurplusvalues(Eq.(5))aresummarizedinFig.1.Threesegmentsareidentified,返回返回競爭市場中產(chǎn)品組合管理博弈模型講義TheoptimalresultforeachmanufacturerisderivedfromtheNashequilibriumpointofthegame.Astrategypairisanaloneequilibriumforthegame.Therelatedpayoffpairis(0.74,0.83).Theoptimalresultforeachma6.ConclusionsandfutureworkThispaperproposedagametheory-basedmodelthatisusedtomaximizetheexpectedsharedsurplusforaproductportfoliomanaged.Theproductportfoliomanagement(PPM)isanimportantoptimizationproblemthatincludesthelargesetofconstraintsandcharacteristics.Therefore,itisveryhelpfulforamanagertouseamarketingdecisionsupportsystemwhichprovideshimtheacceptablesolutionswithconsideringmoreterms.Accordingtothisgoal,a6.Conclusionsandfutureworkgametheory-basedmodelisproposedandappliedtosolvetheproblemsinvolvedinPPM.TherearepotentiallyunlimitedopportunitiesforresearchinPPM.Futurestudiescanfocusonothercharacteristicstoachievemoreidealresults.Othernotabledirectionsforfutureresearchesincludeallowingforsequentialentrystrategies,timevaryingutilitiesandchangingcustomerbehaviors.gametheory-basedmodelisTheEnd!TheEnd!返回返回相關概念納什定理:在一個有n個博弈方的博弈G=﹛S1,…,Sn:u1,…,un}中,如果n是有限的,且Si都是有限集(對i=1,…,n),則該博弈至少存在一個納什均衡,但可能包含混合策略。
產(chǎn)品組合:由不同的產(chǎn)品線構成,而產(chǎn)品線又是由不同的產(chǎn)品項目構成。產(chǎn)品組合策略:在產(chǎn)品組合的深度、廣度和相關性方面做的籌劃和安排。產(chǎn)品組合的廣度:產(chǎn)品線的數(shù)量。產(chǎn)品組合的廣度:產(chǎn)品項目(規(guī)格或品種)的數(shù)量相關概念納什定理:在一個有n個博弈方的博弈G=﹛S1,…,S遺傳算法(GeneticAlgorithm)是一類借鑒生物界的進化規(guī)律(適者生存,優(yōu)勝劣汰遺傳機制)演化而來的隨機化搜索方法。其主要特點是直接對結構對象進行操作,不存在求導和函數(shù)連續(xù)性的限定;具有內在的隱并行性和更好的全局尋優(yōu)能力;采用概率化的尋優(yōu)方法,能自動獲取和指導優(yōu)化的搜索空間,自適應地調整搜索方向,不需要確定的規(guī)則。遺傳算法(GeneticAlgorithm)是一類借鑒生物
單一產(chǎn)品策劃
單一產(chǎn)品策劃程序策劃目標環(huán)境分析市場細分目標市場市場定位概念產(chǎn)品營銷組合返回
單一產(chǎn)品策劃
單一產(chǎn)品策劃程序策劃目標環(huán)境分析市場細分目標Agametheory-basedmodelforproductportfoliomanagementinacompetitivemarket
A.Sadeghi,M.Zandieh
ExpertSystemswithApplications,2010Agametheory-basedmodelforStructureIntroductionLiteraturereviewDescriptionofthePPMproblemProblemformulationExampleConclusionsandfutureworkStructureIntroduction1.IntroductionConsumers,industrialmanagers,andsalesandmarketingpeople,alldemandproductsthatimprovetheirlifestylesortogainanedgeoverthecompetition.So,productportfolios
areinterestingformanypeople.Butunlimitedproductvarietyisnotawaytobesuccessful;therehastobeanoptimum.ItistrueformostcompaniesthattheParetoruleapplies:80%ofthesalesand/orpro?ts
comefrom20%oftheproducts.Itisevidentthatasingleproductcannot1.IntroductionConsumers,indu
ful?llthemanufacturerneedsandonthe
otherhand,fordiversitythereexistslimitation.Intoday’shighlycompetitiveenvironment,determiningan
optimalproductportfolioisveryimportantforthesurvivalofa?rm.Optimalproductportfoliohasreceivedconsiderableattention,becausetheratesoffailureofnewproductportfolioandtheirassociatedlossesareveryhigh.Thewhole
product
component
information(產(chǎn)品構建信息),
engineeringful?llthemanufacturerne
portfoliodecision(工程組合決策)isverycrucialfortheprogressofa?rm
,becauseitisverycostlyanddifficulttochange.Thekeyquestionsare,whatthebestproductportfoliois,andhowmanufacturercan
?ndit.Productportfoliomanagement(PPM)is
ageneralbusinessconceptthatanalyzetheproductionability(生產(chǎn)能力)
andmarketpotential,simultaneously,andthendeterminethebestsetofproductsto
offer.PPMisdevelopedtodirectaproductanditsdiversityportfoliodecision(工程組合決策
includingnotonlyattributes(屬性),levels,andprice’s,butalsoanalysisresults,environmental
requirements(環(huán)保需求),manufacturingprocedures(生產(chǎn)流程),productperformanceinformation(產(chǎn)品性能信息),and
etc.ThereforePPMhasbeenclassifiedasacombinatorialoptimizationproblem.Eachcompanystrivesfortheoptimalityofitsproductofferingsthroughvariouscombinationsofproducts.ThePPMproblemmaydevelopfromtwoperspectives:(I)For
attracttheopinionofcustomersincludingnotonlyattribu
intargetmarkets.(II)Forreduce
themanufactureengineeringcosts.Firstistheproblemofmarketingmanagers,andsecondistheproblemofproducer.Whenbothofthemcomposewitheachotherasreflecttoutilityofcostumersandengineeringcosts,thisproblembecomestomisslinkbetweensaleandproductionchain.JiaoandZhang(2005)considerthecustomer–engineering
interactioninproductportfolioplanning,whichaims
tocreateproduct
familyintargetmarkets.(II)Fospeci?cations(產(chǎn)品族/系列規(guī)格)foratargetmarketsegment,andproposedamaximizingsurplussharemodel(最大剩余份額模型).Incompetitiveenvironment,wedetermineourproductportfoliowithregardtoproductsthatofferbycompetitors,whilethecompetitorsmanagetheirproductportfoliosinregardtoourproducts.Gametheorycanbeusedtomodelthisproblem.Theproposed
modelconstructsproductportfoliospeci?cations(產(chǎn)品族/系列規(guī)格)fo
basedoncustomer–engineeringinteractionmodelinproductportfolioplanningwhichis
developedbyJiaoandZhang.PresentpaperextendspreviousworksinPPMwithregardtocustomer–engineeringconcerns
andcompetitiveenvironment.Itisnotforany
specificproduct,anditcanbeappliedtoadiversityofproductsorservices.objective:developagametheory-basedmodelasaprocedureof?ndingoptimalproductportfolio.basedoncustomer–engineer2.LiteraturereviewAPPMisde?nedasadecisionmakingthatoptimizessomecriteria,suchas
marketshare.Themaincontributionofthemostresearchesin
PPMissummarizedinfollowingissues:
1)Generatingdesign
alternativesviamulti-objective
optimization(通過多目標優(yōu)化生成設計方案).
2)Accountingforuncertaintyandcompetitionwhenestimatingtheachievementofbusinessgoals.
3)Applyingmeta-heuristicalgorithms(元啟發(fā)式算法)
2.LiteraturereviewAPPMisd
tosolveacombinatorial
problemduringtheproductlinedesign.ThedevelopmentofalgorithmsHeuristic(identifyproductpro?leproductlinedesign)
algorithms
improvedheuristicalgorithms
geneticalgorithms.Thedevelopmentofmodels1)JiaoandZhangproposedamodelto
addresstheproductportfolioplanningproblem,itconsiderscustomerpreferences,choiceprobabilitiesandtosolveacombinatorialp
platformbasedproductcosting.Also,ageneticalgorithmprocedureisapplied.
2)AiyoshiandMaki
proposedagameproblemundertheconstraintsofallocationofproductandmarketsharesimultaneously.Theirresearchisconsideredseveralmanufacturersinoligopolymarket(寡頭壟斷市場).Thisproposedmodel,ontheonehandhadthecompetitivecircumstance,butontheotherhand,didnothas
detailssuchaslargevarietyofcustomers'preferences,customer–engineeringconcerns,etc.platformbasedproductcos
3)modelinthispaper
considersbothdetailsandcompetitivecircumstance.3)modelinthispapercon3.DescriptionofthePPMproblemConsideringthe?rmcapabilitiestoproduceproducts,asetofproductportfolioshavebeenidenti?ed.Eachproducthascertaindesirabilitybetweencustomers.Morespeci?cally,weconsiderascenarioinwhichasetofproducts,havebeenidenti?ed,giventhatthemanufacturer(m)hasthecapabilities(bothdesignandproduction)toproducealltheseproducts,..Aproductportfolio,,isasetconsistingofsomeselectedproduct.Combined
withtheproducts,asetofproductportfoliosarecreated,.
相關參數(shù)3.DescriptionofthePPMprobForexample,ifmanufacturermcanproduce3product,7productportfolioareavailable:(=7)
Everyproduct,
,isassociatedwithcertainengineeringcosts,denotedas.Therearemultiplemarketsegments,S={s1,...,sg,...,sG},eachcontaininghomogeneouscustomers,withade?nitesize,Qg.Thecustomer–engineeringinteractionisForexample,ifmanufacturermembodiedinthedecisionsassociatedwithcustomers’choicesofdifferentproducts.Variouscustomerpreferencesondiverseproductsarerepresentedbyrespectiveutilities,(utilityofthegthsegmentforthenthproductofmthmanufacturer).Productdemandsormarketshares,(marketshareofthegthsegment
forthenthproductofmthmanufacturer),aredescribedbytheprobabilitiesofcustomers’choosingproducts.Customerschooseaproductbasedonthesurplusembodiedinthedecisions
buyerrule.Theyhave
theoptionofnotbuyinganyproductsorbuyingcompetitors’products.Weassumethatcompetitorsrespondtothemanufacturer’smoves,meaningthat,thecompetitionreactbyintroducingnewproducts.buyerrule.Theyhavetheo4.ProblemformulationThepresentpaperconsidersamarketwithGsegments,
S={s1,...,sg,...,sG},and2manufacturersthateachofthemcan
offerNmproducts,
andJmproductportfolios,
.Thisgivesthebimatrix-game(雙矩陣對策)
problemwith2playersandJmstrategyforeach,(m=1or2).Thepayoffforeachplayerwillofcoursedependonthecombinedactionsofbothplayers.Apayoffmatrixshowswhatpayoff
eachplayerwillreceiveat4.ProblemformulationThepres
theoutcomeofthegame.Forplayer
m(m=1or2),thepayoffmatrix,Fm,isasfollows:theoutcomeofthegame.FInsummary,aJ1
×J2–bimatrixgameisplayedbytwoplayers,player1andplayer2.Player1hasafinitesetandplayer2hasa?nite
set
of
purestrategies.Thepayoffmatrixes[f1(
)],
ofplayer1
and
ofplayer2aredenotedbyF1andF2respectively.Thisgameisdenotedby(F1,F2).Nowthegame(F1,F2)isplayedasfollows.Players1and2choose,independentofeachother,astrategyInsummary,aJ1×J2–bimatr
andrespectively.Here
canbeseenastheprobabilitythatplayer1(2)chooseshis–throw(–thcolumn).The(expected)payoffforplayer1isx1F1x2andtheexpectedpayofftoplayer2isx1F2x2.Astrategypair()isanequilibriumforthegame(F1,F2)ifandThesetofallequilibriaforthegame(F1,F2)isdenotedbyE(F1,F2).ByatheoremofNashthissetisnon-emptyforallbimatrix-games(Nash,1950).Somemethodsforcalculatingpayoffmatrixarrays,,arethere(seeSection2).WeusedthefunctionthatproposedbyJiaoandZhang(2005).Thisfunctionisbasedoncustomer-engineeringinteractionmodelinPPM.Thisisasfollows:ThesetofallequilibriaforEq.(3)istheexpectedsharedsurplusbyofferingaproductportfolio,consistingofproducts,tocustomersegments,sg,eachwithsizeQg.Themarketpotentials,Qg,canbegivenexogenouslyattheoutsetorestimatedthroughavarietyoftechniquesbasedonhistoricaldataortestmarkets.Theutilityofthegthsegmentforthenthproductofmthmanufacturerisdenotedas.ThismodelassumesthatcustomersonlychooseaEq.(3)istheexpectedshared
productwithapositivesurplus.Thechoiceprobability,,
thatacustomerorasegment,sg,choosesaproduct,,withNcomcompetingproducts,isdefinedasfollows:whereuisascalingparameter(尺度參數(shù)).Accordingtomatrix(1)andEq.(3),letthefunctionbedefined
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025居民房屋租賃合同
- 創(chuàng)意繪畫《獻給祖國媽媽的花籃》課件
- 幼兒園全民安全日教育教案
- 2025城鄉(xiāng)勞動者短期務工合同范本下載
- 2024-2025春統(tǒng)編版道德與法治二年級下冊第二單元《7 我們有新玩法》說課稿(二篇)
- 兒童護理培訓
- 五下語文課程綱要分享課
- 2025因公司未簽訂合同且薪資不公將企業(yè)告至勞動仲裁委員會
- 2025年政府采購服務類合同范本
- 2025文具用品購銷合同范本
- 統(tǒng)信服務器UOS操作系統(tǒng)-產(chǎn)品白皮書
- 糧庫火災的防控措施與技術
- 5G-Advanced通感融合仿真評估方法研究報告
- DB33 860-2012 危險化學品重大危險源安全監(jiān)控管理規(guī)范
- 隱蔽工程影像資料采集要求和拍攝方法(網(wǎng)絡版)
- DB37T 1913-2011 金屬非金屬地下礦山特種作業(yè)人員配置
- 2025年日歷(日程安排-可直接打印)
- 大單元教學學歷案4 《現(xiàn)代詩二首》(略讀實踐課) 統(tǒng)編版語文四年級上冊
- 3.1 農(nóng)業(yè)區(qū)位因素及其變化-看《種地吧》思考 課件 高一下學期 地理 人教版(2019)必修二
- 《保護板培訓教材》課件
- 綠色醫(yī)療器械設計
評論
0/150
提交評論