




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
Chapter19ClusteringAnalysis
Chapter19ClusteringAnalysis1ContentSimilaritycoefficientHierarchicalclusteringanalysis
Dynamicclusteringanalysis
OrderedsampleclusteringanalysisContentSimilaritycoefficient2DiscriminantAnalysis:havingknownwithcertaintytocomefromtwoormorepopulations,it’samethodtoacquirethediscriminatemodelthatwillallocatefurtherindividualstothecorrectpopulation.
ClusteringAnalysis:astatisticmethodforgroupingobjectsofrandomkindintorespectivecategories.It’susedwhenthere’snopriorihypotheses,buttryingtofindthemostappropriatesortingmethodresortingtomathematicalstatisticsandsomecollectedinformation.Ithasbecomethefirstselectedmeanstouncovergreatcapacityofgeneticmessages.
Botharemethodsofmultivariatestatisticstostudyclassification.
DiscriminantAnalysis:h3Clusteringanalysisisamethodofexploringstatisticalanalysis.Itcanbeclassifiedintotwomajorspeciesaccordingtoitsaims.Forexample,mreferstothenumberofvariables(i.e.indexes)whilenreferstothatofcases(i.e.samples),youcandoasfollows:
(1)R-typeclustering:alsocalledindexclustering.Themethodtosortthemkindsofindexes,aimingatloweringthedimensionofindexesandchoosingtypicalones.
(2)Q-typeclustering:alsocalledsampleclustering.Themethodtosortthenkindsofsamplestofindthecommonnessamongthem.Clusteringanalysisisa4ThemostimportantthingforbothR-typeclusteringandQ-typeclusteringisthedefinitionofsimilarity,thatishowtoquantifysimilarity.Thefirststepofclusteringistodefinethemetricsimilaritybetweentwoindexesortwosamples-similaritycoefficientThemostimportantthingfo5§1similaritycoefficient
1similaritycoefficientofR-typeclusteringSupposetherearemkindsofvariables:X1,X2,…,Xm.R-typeclusteringusuallyusetheabsolutevalueofsimplecorrelationcoefficienttodefinethesimilaritycoefficientamongvariables:Thetwovariablestendtobemoresimilarwhentheabsolutevalueincreases.Similarly,Spearmanrankcorrelationcoefficientcanbeusedtodefinethesimilaritycoefficientofnon-normalvariables.Butwhenthevariablesareallqualitativevariables,it’sbesttousecontingencycoefficient.
§1similaritycoefficient162.SimilaritycoefficientcommonlyusedinQ-typeclustering:Supposetherearencasesregardasnspotsinamdimensionsspace,distancebetweentwospotscanbeusedtodefinesimilaritycoefficient,thetwosamplestendtobemoresimilarwhenthedistancedeclines.(1)Euclideandistance
(2)Manhattandistance
(3)Minkowskidistance:
AbsolutedistancereferstoMinkowskidistancewhenq=1;Euclideandistanceisdirect-viewingandsimpletocompute,buthavingnotregardedthecorrelatedrelationsamongvariables.That’swhyManhattandistancewasintroduced.(19-5)2.Similaritycoefficientcomm7(4)Mahalanobisdistance:it’susedtoexpressthesamplecovariancematrixamongmkindsofvariables.Itcanbeworkedoutasfollows:
Whenit’saunitmatrix,MahalanobisdistanceequalstothesquareofEuclideandistance.
Allofthefourdistancesrefertoquantitativevariables,forthequalitativevariablesandordinalvariables,quantizationisneededbeforeusing.(4)Mahalanobisdistance:it’s8§2HierarchicalClusteringAnalysisHierarchicalclusteringanalysisisamostcommonlyusedmethodtosortoutsimilarsamplesorvariables.Theprocessisasfollows:
1)Atthebeginning,samples(orvariables)areregardedrespectivelyasonesinglecluster,thatis,eachclustercontainsonlyonesample(orvariable).Thenworkoutsimilaritycoefficientmatrixamongclusters.Thematrixismadeupofsimilaritycoefficientsbetweensamples(orvariables).Similaritycoefficientmatrixisasymmetricalmatrix.
2)Thetwoclusterswiththemaximumsimilaritycoefficient(minimumdistanceormaximumcorrelationcoefficient)aremergedintoanewcluster.Computethesimilaritycoefficientbetweenthenewclusterwithotherclusters.Repeatsteptwountilallofthesamples(orvariables)aremergedintoonecluster.§2HierarchicalClustering9Thecalculationofsimilaritycoefficientbetweenclusters
Eachstepofhierarchicalclusteringhastocalculatethesimilaritycoefficientamongclusters.Whenthereisonlyonesampleorvariableineachofthetwoclusters,thesimilaritycoefficientbetweenthemequalstothatofthetwosamplesorthetwovariables,orcomputeaccordingtosectionone.
Whentherearemorethanonesampleorvariableineachcluster,manykindsofmethodscanbeusedtocomputesimilaritycoefficient.Justlist5kindsofmethodsasfollows.andrefertothetwoclusters,whichrespectivelyhasorkindsofsamplesorvariables.
Thecalculationofsimilarity101.ThemaximumsimilaritycoefficientmethodIfthere’rerespectively,samples(orvariables)inclusterand,here’realtogetherandsimilaritycoefficientsbetweenthetwoclusters,butonlythemaximumisconsideredasthesimilaritycoefficientofthetwoclusters.
Attention:theminimumdistancealsomeansthemaximumsimilaritycoefficient.
2.TheMinimumsimilaritycoefficientmethodsimilaritycoefficientbetweenclusterscanbe
calculatedasfollows:
1.Themaximumsimilaritycoeff113.Thecenterofgravitymethod(onlyusedinsampleclustering)Theweightsaretheindexmeansamongclusters.Itcanbecomputedasfollows:
4.Clusterequilibrationmethod(onlyusedin
sample
clustering)workouttheaveragesquaredistancebetweentwosamplesofeachcluster.
Clusterequilibrationisoneofthegoodmethodsinthehierarchicalclustering,becauseitcanfullyreflecttheindividualinformationwithinacluster.
3.Thecenterofgravitymeth125.sumofsquaresofdeviations
methodalsocalledWardmethod,onlyforsampleclustering.Itimitatesthebasicthoughtsofvarianceanalysis,thatis,arationalclassificationcanmakethesumofsquaresofdeviationwithinaclustersmaller,whilethatamongclusterslarger.Supposethatsampleshavebeenclassifiedintogclusters,includingand.Thesumofsquaresofdeviationsofclusterfromsamplesis:(isthemeanof).Themergedsumofsquaresofdeviationsofallthegclustersis.Ifandaremerged,therewillbeg-1clusters.
Theincrementofmergedsumofsquaresofdeviationsis,whichisdefinedasthesquaredistancebetweenthetwoclusters.Obviously,whennsamplesrespectivelyformsasinglecluster,themergedsumofsquaresofdeviationis0.5.sumofsquaresofdeviations13Sample19-1There’refourvariablessurveyingfrom3454femaleadults:height(X1)、lengthoflegs(X2)、waistline(X3)andchestcircumference(X4).Thecorrelationmatrixhasbeenworkedoutasfollows:
Trytousehierarchicalclusteringtoclusterthe4indexes.
ThisisacaseofR-type(index)clustering.Wechoosesimplesimilaritycoefficientasthesimilaritycoefficient,andusemaximumsimilaritycoefficientmethodtocalculatethesimilaritycoefficientamongclusters.Sample19-1There’refou14
Theclusteringprocedureislistedasfollows:(1)eachindexisregardedasasingleclusterG1={X1},G2={X2},G3={X3},G4={X4}.There’realtogether4clusters.
(2)Mergethetwoclusterswithmaximumsimilaritycoefficientintoanewcluster.Inthiscase,wemergeG1andG2(similaritycoefficientis0.852)asG5={X1,X2}.CalculatethesimilaritycoefficientamongG5、G3andG4.
ThesimilarmatrixamongG3,G4andG5:Theclusteringprocedure15
(3)MergeG3andG4asG6={G3,G4},forthistimethesimilaritycoefficientbetweenG3andG4ranksthelargest(0.732).ComputethesimilaritycoefficientbetweenG6andG5.
(4)LastlyG5andG6aremergedintooneclusterG7={G5,G6},whichinfactincludesalltheprimitiveindexes.(3)MergeG3andG4asG6={16Drawthehierarchicaldendrogram(picture19-1)accordingtotheprocessofclustering.Asthepictureindicates,it’sbettertobeclassifiedintotwoclusters:{X1,X2},{X3,X4}.Thatis,lengthindexasoneclusterwhilecircumferenceastheotherone.
height
lengthwaistlinechestoflegscircumference
Picture19-1hierarchicaldendrogramwith4indexesDrawthehierarchicalden17Sample19-2Table19-1liststhemeansofenergyexpenditureandsugarexpenditureoffourathleticitemsfromsixathletes.Inordertoprovidecorrespondentdietarystandardtoimproveperformancerecord,pleaseclustertheathleticitemsusinghierarchicalclustering.
Table19-1measurevaluesof4athleticitemsAthleticitemsEnergyexpenditureX1(joule/minute、m2)SugarexpenditureX2(%)WeightloadingcrouchingG127.89261.421.3150.688Pull-upG223.47556.830.1740.088Push-upsG318.92445.13-1.001-1.441Sit-upG420.91361.25-0.4880.665Sample19-2Table19-118
WechooseMinkowskidistanceinthissample,anduseminimumsimilaritycoefficientmethodtocalculatedistancesamongclusters.Toreducetheeffectofvariabledimensions,thevariablesshouldbestandardizedbeforeanalysis.respectivelyreferstothesamplemeanandstandarddeviationofXi.Thedataaftertransformationarelistedintable19-1.WechooseMinkowskidistanc19Theclusteringprocess:
(1)computethesimilaritycoefficientmatrix(i.e.distancematrix)ofthe4samples.Thedistanceofweightloadingcrouchingandpull-upscanbeworkoutusingformula(19-3).
Likewise,thedistancebetweenweightloadingcrouchingandpush-upscanbecomputedasfollows:Lastly,workoutthedistancematrix:
Theclusteringprocess:
(20(2)ThedistancebetweenG2andG4istheminimum,soG2andG4shouldbeemergedintoanewclusterG5={G2,G4}.ComputethedistancebetweenG5andotherclustersusingminimumsimilaritycoefficientmethodaccordingtoformula(19-8).
ThedistancematrixofG1,G3andG5:
(3)MergeG1andG5intoanewclusterG6={G1,G5}.ComputethedistancebetweenG6andG3:(4)lastlymergeG1andG6intoG7={G1,G6}.Alltheindexeshaveallbeenmergedintoalargecluster.(2)ThedistancebetweenG221
Accordingtotheprocessofclustering,drawoutthethehierarchydendrogram(chart19-2).Asthehierarchydendrogramshowsandexpertisewehavelearned,theindexesshouldbesortedintotwoclusters:{G1,G2,G4}and{G3}.Physicalenergyexpenditureinweightloadingcrouching、pull-upsandsit-upswouldbemuchhigher,dietarystandardimprovementmightberequiredinthoseitemsduringtraining.Accordingtotheprocess22
Analysisofclusteringexamples
Differentdefinitionofsimilaritycoefficientandthatamongclusterswillcausedifferentclusteringresults.Expertiseaswellasclusteringmethodisimportanttotheexplanationofclusteringanalysis.Analysisofclusteringexam23
Sample19-3twenty-sevenpetroleumpitchworkersandpyro-furnacemanaresurveyedabouttheirages,lengthofserviceandsmokinginformation.Inaddition,detectionsofsero-P21,sero-P53,peripheralbloodlymphocyteSCE,thenumberofchromosomalaberrationandthenumberofcellsthathadhappenedchromosomalaberrationwerecarriedoutamongtheseworkers(table19-3).(P21mutiple=P21detectionvalue/themeanofcontrolgroupP21)Pleasesortthe27workersusinghierarchicalclusteringserviceablymethod.
Sample19-3twenty-seven24Table19-3resultofbio-markerdetectionandclusteringanalysisofpetroleumpitchworkersandpyro-furnacemanSampleNumberageLengthofservicesmokeRamus/dSero-P21P21MultipleP53SCENumberofchromosomeaberrationNumberofcellsofChromosomeaberrationresultofculsterin680.358.1144235122035102.761.436.84331352252027842.190.544.1133143272024511.930.4711.4596153822032472.560.8011.68551651313037102.920.3711.6022174091031942.510.4011.40551834172046583.670.4611.3533195029050193.950.4713.4510811042202074825.890.1213.110021157301538002.990.1910.762211236152024781.950.2510.00001133712038273.010.8210.50441145232029842.350.1611.153311552321037492.950.7211.45111011642273049413.890.7313.807611744272039483.110.3313.6516141184021533602.640.3711.40001193821529362.310.6911.401112044272068515.390.9912.28762214327039263.090.4711.95001222610343813.450.5211.807512337182071425.620.8511.81552242892026122.060.3711.65111252593026382.080.7812.251112634142043223.400.4115.005512750322028622.250.698.80221Table19-3resultofbio-marke25ThisexampleapplyminimumsimilaritycoefficientmethodoriginatingfromEuclideandistance,clusterequilibrationmethodandsumofsquaresofdeviationsmethodtoclusterthedata.Theresultsarelistedinchart19-3,chart19-4andchart19-5.Allthevariableshavebeenstandardizedbeforeanalysis.Thisexampleapplyminimum26
chart19-3thehierarchydendrogramof27petroleumpitchworkersandpyro-furnacemenusingminimumsimilaritycoefficientmethodchart19-3thehierarchyden27Chart19-4thehierarchydendrogramof27petroleumpitchworkersandpyro-furnacemenusingclusterequilibrationmethodChart19-4thehierarchydend28Chart19-5thehierarchydendrogramof27petroleumpitchworkersandpyro-furnacemenusingsumofsquaresofdeviationsmethod
Chart19-5thehierarchydendr29Theoutcomesofthethreekindsofclusteringarenotthesame,fromwhichwecanseedifferentwayshavedifferentefficiency.Thedifferencesaremoredistinctincaseofmorevariables.Soyou’dbetterselectefficientvariablesbeforeclusteringanalysis.Suchasthep21andp53inthisexample.Youcangetmoreinformationbyreadingtheclusteringchart.Theoutcomesofthethreek30Accordingtoexpertise,wecanseetheoutcomeofequilibrationclusteringismorereasonable.Theclassifyingresultisfilledinthelastcolumn.Workersnumbered{10,20,23}areclassifiedasoneclass;othersareanother.researchersfindthatworkersnumbered{10,20,23}areinhighriskofcancer.Number{10,20,23,8,16,26}areclusteredtogetheraccordingtothechartofsumofsquaresofdeviations,remindingthatworkersof8,16,26maybeinhighrisktoo.Accordingtoexpertise,we31DynamicclusteringIftherearetoomanysamplesunderclassified,hierarchyclusteringanalysisdemandsmorespacetostoresimilaritycoefficientmatrix.andisquiteinefficient.What’smore,samplescan’tbechangedoncetheyareclassified.Becauseoftheseshortcomings,statistsputforwarddynamicclusteringwhichcanovercometheinefficiencyandadjusttheclassifyingalongwiththeprocessofclustering.DynamicclusteringIfther32Theprincipleofdynamicclusteringanalysisis:firstly,selectseveralrepresentativesamples,calledcohesionpoint,asthecoreofeachclass;secondly,classifyothers.adjustthecoreofeachclassuntilclassifyingisreasonable.Themostcommonwayofdynamicclusteringanalysisisk-means,whichisquiteefficientandit’sprincipleissimple.Wecangettheoutcomesevenifsamplesareinlargenumber.Howeverwehavetoknowhowmanyclassesthesamplesareclassifiedintobeforeanalysis.wemayknowundersomecircumstancesintermsofexpertise,butnotinothercases.Theprincipleofdynamicc33OrdinalClusteringMethodsClusteringanalysismentionedbeforearefornon-sequencedsamples.Butthereareanotherkindofdata,suchasagesofdevelopmentdata,incidencerateindifferentyearsandlocations.Thesedataareinorderintimeandspace,sotheyarecalledordinaldata.Wehavetotaketheorderintoconsiderationbeforeclassifyingandcannotdestroytheordersothatwecallitordinalclusteringmethods.OrdinalClusteringMethodsC34Attentions
1.Clusteringanalysisisusedtoexploredata.Explanationofoutcomesmustbeintegratedwithexpertise.trydifferentwaysofclusteringtogetreasonableoutcomes.2.pre-disposevariableandgetridofuselessvariablewhichchangelittleandthesewithtoomanyabsences.generallyspeaking,weneedtomakestandardtransformorrangetransformtoeliminateeffectofdimensionandcoefficientofvariation.Attentions
1.Clusteringana353.Reasonableoutcomesofclassifyingwillleadtodistinctdifferencesbetweenclasses,andminuteinclass.afterclassifyingwecanapplyanalysisofvarianceincaseofsinglevariable,incaseofmultiplevariabletocheckstatisticaldifferencesbetweenclasses.4.fuzzyclusteringanalysis,neuro-networksclusteringanalysis,andotherspecificanalysistoexploregeneticdataarenotintroducedhere,pleaseinquirerelatedinformationoninternet.3.Reasonableoutcomesofclas36Enjoylearning!Enjoylearning!37Chapter19ClusteringAnalysis
Chapter19ClusteringAnalysis38ContentSimilaritycoefficientHierarchicalclusteringanalysis
Dynamicclusteringanalysis
OrderedsampleclusteringanalysisContentSimilaritycoefficient39DiscriminantAnalysis:havingknownwithcertaintytocomefromtwoormorepopulations,it’samethodtoacquirethediscriminatemodelthatwillallocatefurtherindividualstothecorrectpopulation.
ClusteringAnalysis:astatisticmethodforgroupingobjectsofrandomkindintorespectivecategories.It’susedwhenthere’snopriorihypotheses,buttryingtofindthemostappropriatesortingmethodresortingtomathematicalstatisticsandsomecollectedinformation.Ithasbecomethefirstselectedmeanstouncovergreatcapacityofgeneticmessages.
Botharemethodsofmultivariatestatisticstostudyclassification.
DiscriminantAnalysis:h40Clusteringanalysisisamethodofexploringstatisticalanalysis.Itcanbeclassifiedintotwomajorspeciesaccordingtoitsaims.Forexample,mreferstothenumberofvariables(i.e.indexes)whilenreferstothatofcases(i.e.samples),youcandoasfollows:
(1)R-typeclustering:alsocalledindexclustering.Themethodtosortthemkindsofindexes,aimingatloweringthedimensionofindexesandchoosingtypicalones.
(2)Q-typeclustering:alsocalledsampleclustering.Themethodtosortthenkindsofsamplestofindthecommonnessamongthem.Clusteringanalysisisa41ThemostimportantthingforbothR-typeclusteringandQ-typeclusteringisthedefinitionofsimilarity,thatishowtoquantifysimilarity.Thefirststepofclusteringistodefinethemetricsimilaritybetweentwoindexesortwosamples-similaritycoefficientThemostimportantthingfo42§1similaritycoefficient
1similaritycoefficientofR-typeclusteringSupposetherearemkindsofvariables:X1,X2,…,Xm.R-typeclusteringusuallyusetheabsolutevalueofsimplecorrelationcoefficienttodefinethesimilaritycoefficientamongvariables:Thetwovariablestendtobemoresimilarwhentheabsolutevalueincreases.Similarly,Spearmanrankcorrelationcoefficientcanbeusedtodefinethesimilaritycoefficientofnon-normalvariables.Butwhenthevariablesareallqualitativevariables,it’sbesttousecontingencycoefficient.
§1similaritycoefficient1432.SimilaritycoefficientcommonlyusedinQ-typeclustering:Supposetherearencasesregardasnspotsinamdimensionsspace,distancebetweentwospotscanbeusedtodefinesimilaritycoefficient,thetwosamplestendtobemoresimilarwhenthedistancedeclines.(1)Euclideandistance
(2)Manhattandistance
(3)Minkowskidistance:
AbsolutedistancereferstoMinkowskidistancewhenq=1;Euclideandistanceisdirect-viewingandsimpletocompute,buthavingnotregardedthecorrelatedrelationsamongvariables.That’swhyManhattandistancewasintroduced.(19-5)2.Similaritycoefficientcomm44(4)Mahalanobisdistance:it’susedtoexpressthesamplecovariancematrixamongmkindsofvariables.Itcanbeworkedoutasfollows:
Whenit’saunitmatrix,MahalanobisdistanceequalstothesquareofEuclideandistance.
Allofthefourdistancesrefertoquantitativevariables,forthequalitativevariablesandordinalvariables,quantizationisneededbeforeusing.(4)Mahalanobisdistance:it’s45§2HierarchicalClusteringAnalysisHierarchicalclusteringanalysisisamostcommonlyusedmethodtosortoutsimilarsamplesorvariables.Theprocessisasfollows:
1)Atthebeginning,samples(orvariables)areregardedrespectivelyasonesinglecluster,thatis,eachclustercontainsonlyonesample(orvariable).Thenworkoutsimilaritycoefficientmatrixamongclusters.Thematrixismadeupofsimilaritycoefficientsbetweensamples(orvariables).Similaritycoefficientmatrixisasymmetricalmatrix.
2)Thetwoclusterswiththemaximumsimilaritycoefficient(minimumdistanceormaximumcorrelationcoefficient)aremergedintoanewcluster.Computethesimilaritycoefficientbetweenthenewclusterwithotherclusters.Repeatsteptwountilallofthesamples(orvariables)aremergedintoonecluster.§2HierarchicalClustering46Thecalculationofsimilaritycoefficientbetweenclusters
Eachstepofhierarchicalclusteringhastocalculatethesimilaritycoefficientamongclusters.Whenthereisonlyonesampleorvariableineachofthetwoclusters,thesimilaritycoefficientbetweenthemequalstothatofthetwosamplesorthetwovariables,orcomputeaccordingtosectionone.
Whentherearemorethanonesampleorvariableineachcluster,manykindsofmethodscanbeusedtocomputesimilaritycoefficient.Justlist5kindsofmethodsasfollows.andrefertothetwoclusters,whichrespectivelyhasorkindsofsamplesorvariables.
Thecalculationofsimilarity471.ThemaximumsimilaritycoefficientmethodIfthere’rerespectively,samples(orvariables)inclusterand,here’realtogetherandsimilaritycoefficientsbetweenthetwoclusters,butonlythemaximumisconsideredasthesimilaritycoefficientofthetwoclusters.
Attention:theminimumdistancealsomeansthemaximumsimilaritycoefficient.
2.TheMinimumsimilaritycoefficientmethodsimilaritycoefficientbetweenclusterscanbe
calculatedasfollows:
1.Themaximumsimilaritycoeff483.Thecenterofgravitymethod(onlyusedinsampleclustering)Theweightsaretheindexmeansamongclusters.Itcanbecomputedasfollows:
4.Clusterequilibrationmethod(onlyusedin
sample
clustering)workouttheaveragesquaredistancebetweentwosamplesofeachcluster.
Clusterequilibrationisoneofthegoodmethodsinthehierarchicalclustering,becauseitcanfullyreflecttheindividualinformationwithinacluster.
3.Thecenterofgravitymeth495.sumofsquaresofdeviations
methodalsocalledWardmethod,onlyforsampleclustering.Itimitatesthebasicthoughtsofvarianceanalysis,thatis,arationalclassificationcanmakethesumofsquaresofdeviationwithinaclustersmaller,whilethatamongclusterslarger.Supposethatsampleshavebeenclassifiedintogclusters,includingand.Thesumofsquaresofdeviationsofclusterfromsamplesis:(isthemeanof).Themergedsumofsquaresofdeviationsofallthegclustersis.Ifandaremerged,therewillbeg-1clusters.
Theincrementofmergedsumofsquaresofdeviationsis,whichisdefinedasthesquaredistancebetweenthetwoclusters.Obviously,whennsamplesrespectivelyformsasinglecluster,themergedsumofsquaresofdeviationis0.5.sumofsquaresofdeviations50Sample19-1There’refourvariablessurveyingfrom3454femaleadults:height(X1)、lengthoflegs(X2)、waistline(X3)andchestcircumference(X4).Thecorrelationmatrixhasbeenworkedoutasfollows:
Trytousehierarchicalclusteringtoclusterthe4indexes.
ThisisacaseofR-type(index)clustering.Wechoosesimplesimilaritycoefficientasthesimilaritycoefficient,andusemaximumsimilaritycoefficientmethodtocalculatethesimilaritycoefficientamongclusters.Sample19-1There’refou51
Theclusteringprocedureislistedasfollows:(1)eachindexisregardedasasingleclusterG1={X1},G2={X2},G3={X3},G4={X4}.There’realtogether4clusters.
(2)Mergethetwoclusterswithmaximumsimilaritycoefficientintoanewcluster.Inthiscase,wemergeG1andG2(similaritycoefficientis0.852)asG5={X1,X2}.CalculatethesimilaritycoefficientamongG5、G3andG4.
ThesimilarmatrixamongG3,G4andG5:Theclusteringprocedure52
(3)MergeG3andG4asG6={G3,G4},forthistimethesimilaritycoefficientbetweenG3andG4ranksthelargest(0.732).ComputethesimilaritycoefficientbetweenG6andG5.
(4)LastlyG5andG6aremergedintooneclusterG7={G5,G6},whichinfactincludesalltheprimitiveindexes.(3)MergeG3andG4asG6={53Drawthehierarchicaldendrogram(picture19-1)accordingtotheprocessofclustering.Asthepictureindicates,it’sbettertobeclassifiedintotwoclusters:{X1,X2},{X3,X4}.Thatis,lengthindexasoneclusterwhilecircumferenceastheotherone.
height
lengthwaistlinechestoflegscircumference
Picture19-1hierarchicaldendrogramwith4indexesDrawthehierarchicalden54Sample19-2Table19-1liststhemeansofenergyexpenditureandsugarexpenditureo
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 球館施工改造方案(3篇)
- 公司對外輿情管理制度
- 車間屋頂通風方案(3篇)
- 培訓機構(gòu)落地管理制度
- 小學環(huán)境治理管理制度
- 線路改造增效方案(3篇)
- 房屋征收應急管理制度
- 工地防汛物資管理制度
- 超市工具采購方案(3篇)
- 應急食品組裝方案(3篇)
- 2025屆高三高考押題預測卷 政治(黑吉遼蒙卷01) 含解析
- 湖南省煙草專賣局(公司)筆試試題2024
- 2025年入團考試試題及答案完美呈現(xiàn)
- 2025年全國低壓電工作業(yè)證(復審)考試練習題庫(600題)附答案
- 河北省廊坊市廣陽區(qū)2023-2024學年六年級下學期語文6月期末試卷(含答案)
- 南通護理筆試題目及答案
- 2025-2030中國私人飛機行業(yè)深度調(diào)研及投資前景預測研究報告
- 孩子護眼協(xié)議書范本
- 2025年 九年級數(shù)學中考二輪復習 二次函數(shù)與圓綜合壓軸題 專題提升訓練
- 醫(yī)院內(nèi)虛擬病區(qū)智慧化血糖綜合管理專家共識(2025版)解讀
- 2024北京西城區(qū)三年級(下)期末數(shù)學試題及答案
評論
0/150
提交評論