版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——高一數(shù)學(xué)必修二知識(shí)點(diǎn)高中數(shù)學(xué)學(xué)識(shí)對(duì)比多,(高一數(shù)學(xué))必修二需要記憶的學(xué)識(shí)點(diǎn)原理也好多,做好學(xué)識(shí)點(diǎn)的整理能夠扶助同學(xué)們了解數(shù)學(xué)大體布局,更好的學(xué)習(xí)數(shù)學(xué)。下面是我為你整理的高一數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)歸納,夢(mèng)想能幫到你。
高一數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)1
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
1、按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
2、若從有無(wú)公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒(méi)有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平(面相)交、與平面平行
①直線在平面內(nèi)——有多數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時(shí),所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:假設(shè)平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:假設(shè)一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說(shuō)直線a和平面彼此垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:假設(shè)一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:假設(shè)兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒(méi)有公共點(diǎn)
直線和平面平行的定義:假設(shè)一條直線和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:假設(shè)平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:假設(shè)一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
高一數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)2
1.函數(shù)的零點(diǎn)
(1)定義:
對(duì)于函數(shù)y=f(x)(x∈D),把使f(x)=0成立的實(shí)數(shù)x叫做函數(shù)y=f(x)(x∈D)的零點(diǎn).
(2)函數(shù)的零點(diǎn)與相應(yīng)方程的根、函數(shù)的圖象與x軸交點(diǎn)間的關(guān)系:
方程f(x)=0有實(shí)數(shù)根?函數(shù)y=f(x)的圖象與x軸有交點(diǎn)?函數(shù)y=f(x)有零點(diǎn).
(3)函數(shù)零點(diǎn)的判定(零點(diǎn)存在性定理):
假設(shè)函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,并且有f(a)·f(b)0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根.
2.二次函數(shù)y=ax2+bx+c(a0)的圖象與零點(diǎn)的關(guān)系
3.二分法
對(duì)于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)0的函數(shù)y=f(x),通過(guò)不斷地把函數(shù)f(x)的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步迫近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的(方法)叫做二分法.
4.函數(shù)的零點(diǎn)不是點(diǎn):
函數(shù)y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數(shù)根,也就是函數(shù)y=f(x)的圖象與x軸交點(diǎn)的橫坐標(biāo),所以函數(shù)的零點(diǎn)是一個(gè)數(shù),而不是一個(gè)點(diǎn).在寫(xiě)函數(shù)零點(diǎn)時(shí),所寫(xiě)的確定是一個(gè)數(shù)字,而不是一個(gè)坐標(biāo).
5.對(duì)函數(shù)零點(diǎn)存在的判斷中,務(wù)必強(qiáng)調(diào):
(1)f(x)在[a,b]上連續(xù);
(2)f(a)·f(b)0;
(3)在(a,b)內(nèi)存在零點(diǎn).
這是零點(diǎn)存在的一個(gè)充分條件,但不必要.
6.對(duì)于定義域內(nèi)連續(xù)不斷的函數(shù),其相鄰兩個(gè)零點(diǎn)之間的全體函數(shù)值保持同號(hào).
1.等比數(shù)列的有關(guān)概念
(1)定義:
假設(shè)一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_,q為非零常數(shù)).
(2)等比中項(xiàng):
假設(shè)a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)?a,G,b成等比數(shù)列?G2=ab.
2.等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:an=a1qn-1.
3.等比數(shù)列{an}的常用性質(zhì)
(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),那么am·an=ap·aq=a.
更加地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.
4.等比數(shù)列的特征
(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的,公比q也是非零常數(shù).
(2)由an+1=qan,q≠0并不能立刻斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
5.等比數(shù)列的前n項(xiàng)和Sn
(1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,留神這種思想方法在數(shù)列求和中的運(yùn)用.
(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),務(wù)必留神對(duì)q=1與q≠1分類議論,防止因疏忽q=1這一特殊情形導(dǎo)致解題失誤.
高一數(shù)學(xué)必修二學(xué)識(shí)點(diǎn)3
1、棱柱
棱柱的定義:有兩個(gè)面彼此平行,其余各面都是四邊形,并且每?jī)蓚€(gè)四邊形的公共邊都彼此平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
(2)兩個(gè)底面與平行于底面的截面是全等的多邊形
(3)過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形
2、棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
(2)平行于底面的截面與底面是好像的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
3、正棱錐
正棱錐的定義:假設(shè)一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版龍門吊租賃及吊裝作業(yè)風(fēng)險(xiǎn)分擔(dān)協(xié)議3篇
- 二零二五年四人共同經(jīng)營(yíng)民宿的合伙協(xié)議書(shū)
- 二零二五年度出租車車輛租賃與智能駕駛技術(shù)研發(fā)合同3篇
- 二零二五年度展會(huì)現(xiàn)場(chǎng)搭建及展品運(yùn)輸合同3篇
- 2025年度高空作業(yè)安全防護(hù)施工合同范本4篇
- 二零二五年度城市綠化養(yǎng)護(hù)承包合同范本8篇
- 2025年度電動(dòng)汽車充電樁安全檢測(cè)與維護(hù)服務(wù)合同3篇
- 2025年新媒體營(yíng)銷活動(dòng)合作協(xié)議范本2篇
- 2025年度泥瓦工勞務(wù)分包合同工期延誤責(zé)任協(xié)議
- 2025版農(nóng)業(yè)機(jī)械銷售訂購(gòu)合同(年度版)3篇
- 2024年合肥市廬陽(yáng)區(qū)中考二模英語(yǔ)試題含答案
- 質(zhì)檢中心制度匯編討論版樣本
- 藥娘激素方案
- 提高靜脈留置使用率品管圈課件
- GB/T 10739-2023紙、紙板和紙漿試樣處理和試驗(yàn)的標(biāo)準(zhǔn)大氣條件
- 《心態(tài)與思維模式》課件
- C語(yǔ)言程序設(shè)計(jì)(慕課版 第2版)PPT完整全套教學(xué)課件
- 行業(yè)會(huì)計(jì)比較(第三版)PPT完整全套教學(xué)課件
- 高考英語(yǔ)語(yǔ)法填空專項(xiàng)訓(xùn)練(含解析)
- 危險(xiǎn)化學(xué)品企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化課件
- 《美的歷程》導(dǎo)讀課件
評(píng)論
0/150
提交評(píng)論