版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列事件中必然發(fā)生的事件是()A.一個圖形平移后所得的圖形與原來的圖形不全等B.不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式C.200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品D.隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù)2.(2011?德州)一個平面封閉圖形內(nèi)(含邊界)任意兩點距離的最大值稱為該圖形的“直徑”,封閉圖形的周長與直徑之比稱為圖形的“周率”,下面四個平面圖形(依次為正三角形、正方形、正六邊形、圓)的周率從左到右依次記為a1,a2,a3,a4,則下列關(guān)系中正確的是()A.a(chǎn)4>a2>a1 B.a(chǎn)4>a3>a2C.a(chǎn)1>a2>a3 D.a(chǎn)2>a3>a43.在一個箱子里放有1個自球和2個紅球,它們除顏色外其余都相同,從箱子里任意摸出1個球,摸到白球的概率是()A.1 B. C. D.4.能判斷一個平行四邊形是矩形的條件是()A.兩條對角線互相平分 B.一組鄰邊相等C.兩條對角線互相垂直 D.兩條對角線相等5.對于反比例函數(shù),下列說法正確的是()A.圖象經(jīng)過點 B.圖象位于第二、四象限C.圖象是中心對稱圖形 D.當時,隨的增大而增大6.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm7.如圖,某小區(qū)計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設(shè)道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.國家實施”精準扶貧“政策以來,很多貧困人口走向了致富的道路.某地區(qū)2016年底有貧困人口9萬人,通過社會各界的努力,2018年底貧困人口減少至1萬人.設(shè)2016年底至2018年底該地區(qū)貧困人口的年平均下降率為,根據(jù)題意列方程得()A. B. C. D.9.把一張矩形的紙片對折后和原矩形相似,那么大矩形與小矩形的相似比是()A.:1 B.4:1 C.3:1 D.2:110.二次函數(shù)y=ax2+bx+c的y與x的部分對應(yīng)值如下表:x…0134…y…242﹣2…則下列判斷中正確的是()A.拋物線開口向上 B.拋物線與y軸交于負半軸C.當x=﹣1時y>0 D.方程ax2+bx+c=0的負根在0與﹣1之間11.下列圖形中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.12.二次函數(shù)的圖象的頂點坐標是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,半圓形紙片的直徑,弦,沿折疊,若的中點與點重合,則的長為__________.14.如圖,在△ABC中,P是AB邊上的點,請補充一個條件,使△ACP∽△ABC,這個條件可以是:___(寫出一個即可),15.關(guān)于的方程沒有實數(shù)根,則的取值范圍為____________16.若圓中一條弦長等于半徑,則這條弦所對的圓周角的度數(shù)為______.17.如圖,函數(shù)y=的圖象所在坐標系的原點是_______.18.如圖,在4×4的正方形網(wǎng)絡(luò)中,已將部分小正方形涂上陰影,有一個小蟲落到網(wǎng)格中,那么小蟲落到陰影部分的概率是____.三、解答題(共78分)19.(8分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.(1)求證:CD是⊙O的切線;(2)若∠D=30°,BD=2,求圖中陰影部分的面積.20.(8分)快樂的寒假臨近啦!小明和小麗計劃在寒假期間去鎮(zhèn)江旅游.他們選取金山(記為)、焦山(記為)、北固山(記為)這三個景點為游玩目標.如果他們各自在三個景點中任選一個作為游玩的第一站(每個景點被選為第一站的可能性相同),請用“畫樹狀圖”或“列表”的方法求他倆都選擇金山為第一站的概率.21.(8分)如圖,的直徑垂直于弦,垂足為,為延長線上一點,且.(1)求證:為的切線;(2)若,,求的半徑.22.(10分)小李在學習了定理“直角三角形斜邊上的中線等于斜邊的一半”之后做了如下思考,請你幫他完成如下問題:(1)他認為該定理有逆定理:“如果一個三角形某條邊上的中線等于該邊長的一半,那么這個三角形是直角三角形”應(yīng)該成立.即如圖①,在中,是邊上的中線,若,求證:.(2)如圖②,已知矩形,如果在矩形外存在一點,使得,求證:.(可以直接用第(1)問的結(jié)論)(3)在第(2)問的條件下,如果恰好是等邊三角形,請求出此時矩形的兩條鄰邊與的數(shù)量關(guān)系.23.(10分)如圖,CD為⊙O的直徑,弦AB交CD于點E,連接BD、OB.(1)求證:△AEC∽△DEB;(2)若CD⊥AB,AB=6,DE=1,求⊙O的半徑長.24.(10分)如圖,在直角△ABC中,∠C=90°,AB=5,作∠ABC的平分線交AC于點D,在AB上取點O,以點O為圓心經(jīng)過B、D兩點畫圓分別與AB、BC相交于點E、F(異于點B).(1)求證:AC是⊙O的切線;(2)若點E恰好是AO的中點,求的長;(3)若CF的長為,①求⊙O的半徑長;②點F關(guān)于BD軸對稱后得到點F′,求△BFF′與△DEF′的面積之比.25.(12分)某商品的進價為每件50元,售價為每件60元,每個月可賣出200件.如果每件商品的售價上漲1元,則每個月少賣10件(每件售價不能高于72元).設(shè)每件商品的售價上漲x元(x為整數(shù)),每個月的銷售利潤為y元,(1)求y與x的函數(shù)關(guān)系式,并直接寫出x的取值范圍;(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大月利潤是多少元?26.(問題發(fā)現(xiàn))如圖1,半圓O的直徑AB=10,點P是半圓O上的一個動點,則△PAB的面積最大值是;(問題探究)如圖2所示,AB、AC、是某新區(qū)的三條規(guī)劃路,其中AB=6km,AC=3km,∠BAC=60°,所對的圓心角為60°.新區(qū)管委會想在路邊建物資總站點P,在AB、AC路邊分別建物資分站點E、F,即分別在、線段AB和AC上選取點P、E、F.由于總站工作人員每天要將物資在各物資站點間按P→E→F→P的路徑進行運輸,因此,要在各物資站點之間規(guī)劃道路PE、EF和FP.顯然,為了快捷環(huán)保和節(jié)約成本,就要使線段PE、EF、FP之和最短(各物資站點與所在道路之間的距離、路寬均忽略不計).可求得△PEF周長的最小值為km;(拓展應(yīng)用)如圖3是某街心花園的一角,在扇形OAB中,∠AOB=90°,OA=12米,在圍墻OA和OB上分別有兩個入口C和D,且AC=4米,D是OB的中點,出口E在上.現(xiàn)準備沿CE、DE從入口到出口鋪設(shè)兩條景觀小路,在四邊形CODE內(nèi)種花,在剩余區(qū)域種草.①出口E設(shè)在距直線OB多遠處可以使四邊形CODE的面積最大?最大面積是多少?(小路寬度不計)②已知鋪設(shè)小路CE所用的普通石材每米的造價是200元,鋪設(shè)小路DE所用的景觀石材每米的造價是400元.請問:在上是否存在點E,使鋪設(shè)小路CE和DE的總造價最低?若存在,求出最低總造價和出口E距直線OB的距離;若不存在,請說明理由.
參考答案一、選擇題(每題4分,共48分)1、C【分析】直接利用隨機事件、必然事件、不可能事件分別分析得出答案.【詳解】A、一個圖形平移后所得的圖形與原來的圖形不全等,是不可能事件,故此選項錯誤;B、不等式的兩邊同時乘以一個數(shù),結(jié)果仍是不等式,是隨機事件,故此選項錯誤;C、200件產(chǎn)品中有5件次品,從中任意抽取6件,至少有一件是正品,是必然事件,故此選項正確;D、隨意翻到一本書的某頁,這頁的頁碼一定是偶數(shù),是隨機事件,故此選項錯誤;故選C.【點睛】此題主要考查了隨機事件、必然事件、不可能事件,正確把握相關(guān)定義是解題關(guān)鍵.2、B【解析】試題解析:設(shè)等邊三角形的邊長是a,則等邊三角形的周率a1==3設(shè)正方形的邊長是x,由勾股定理得:對角線是x,則正方形的周率是a1==1≈1.818,設(shè)正六邊形的邊長是b,過F作FQ∥AB交BE于Q,得到平行四邊形ABQF和等邊三角形EFQ,直徑是b+b=1b,∴正六邊形的周率是a3==3,圓的周率是a4==π,∴a4>a3>a1.故選B.考點:1.正多邊形和圓;1.等邊三角形的判定與性質(zhì);3.多邊形內(nèi)角與外角;4.平行四邊形的判定與性質(zhì).3、C【解析】結(jié)合題意求得箱子中球的總個數(shù),再根據(jù)概率公式即可求得答案.【詳解】依題可得,箱子中一共有球:(個),∴從箱子中任意摸出一個球,是白球的概率.故答案為:C.【點睛】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、D【分析】根據(jù)矩形的判定進行分析即可;【詳解】選項A中,兩條對角線互相平分是平行四邊形,故選項A錯誤;選項B中,一組鄰邊相等的平行四邊形是菱形,故選項B錯誤;選項C中,兩條對角線互相垂直的平行四邊形是菱形,故選項C錯誤;選項D中,兩條對角線相等的平行四邊形是矩形,故選項D正確;故選D.【點睛】本題主要考查了矩形的判定,掌握矩形的判定是解題的關(guān)鍵.5、C【分析】根據(jù)反比例函數(shù)的圖象和性質(zhì),可對各個選項進行分析,判斷對錯即可.【詳解】解:A、∵當x=1時,y=1,∴函數(shù)圖象過點(1,1),故本選項錯誤;B、∵,∴函數(shù)圖象的每個分支位于第一和第三象限,故本選項錯誤;C、由反比例函數(shù)的圖象對稱性可知,反比例函數(shù)的圖象是關(guān)于原點對稱,圖象是中心對稱圖,故本選項正確;D、∵,∴在每個象限內(nèi),y隨著x的增大而減小,故本選項錯誤;故選:C.【點睛】本題重點考查反比例函數(shù)的圖象和性質(zhì),熟練掌握反比例函數(shù)圖象和性質(zhì)是解題的關(guān)鍵.6、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關(guān)鍵是根據(jù)垂徑定理得出OE的長.7、A【解析】六塊矩形空地正好能拼成一個矩形,設(shè)道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.8、B【分析】等量關(guān)系為:2016年貧困人口年貧困人口,把相關(guān)數(shù)值代入計算即可.【詳解】解:設(shè)這兩年全省貧困人口的年平均下降率為,根據(jù)題意得:,故選B.【點睛】本題考查由實際問題抽象出一元二次方程,得到2年內(nèi)變化情況的等量關(guān)系是解決本題的關(guān)鍵.9、A【分析】設(shè)原矩形的長為2a,寬為b,對折后所得的矩形與原矩形相似,則【詳解】設(shè)原矩形的長為2a,寬為b,
則對折后的矩形的長為b,寬為a,
∵對折后所得的矩形與原矩形相似,
∴,
∴大矩形與小矩形的相似比是:1;
故選A.【點睛】理解好:如果兩個邊數(shù)相同的多邊形的對應(yīng)角相等,對應(yīng)邊成比例,這兩個或多個多邊形叫做相似多邊形,相似多邊形對應(yīng)邊的比叫做相似比.10、D【分析】根據(jù)表中的對應(yīng)值,求出二次函數(shù)的表達式即可求解.【詳解】解:選取,,三點分別代入得解得:∴二次函數(shù)表達式為∵,拋物線開口向下;∴選項A錯誤;∵函數(shù)圖象與的正半軸相交;∴選項B錯誤;當x=-1時,;∴選項C錯誤;令,得,解得:,∵,方程的負根在0與-1之間;故選:D.【點睛】本題考查二次函數(shù)圖象與性質(zhì),掌握性質(zhì),利用數(shù)形結(jié)合思想解題是關(guān)鍵.11、C【分析】觀察四個選項中的圖形,找出既是軸對稱圖形又是中心對稱圖形的那個即可得出結(jié)論.【詳解】解:A、此圖形不是軸對稱圖形,是中心對稱圖形,此選項不符合題意;B、此圖形是軸對稱圖形,不是中心對稱圖形,此選項不符合題意;C、此圖形是軸對稱圖形,也是中心對稱圖形,此選項符合題意;D、此圖形既不是軸對稱圖形也不是中心對稱圖形,此選項不符合題意;故選:C.【點睛】本題考查了中心對稱圖形以及軸對稱圖形,牢記軸對稱及中心對稱圖形的特點是解題的關(guān)鍵.12、B【分析】根據(jù)二次函數(shù)的性質(zhì),用配方法求出二次函數(shù)頂點式,再得出頂點坐標即可.【詳解】解:∵拋物線
=(x+1)2+3
∴拋物線的頂點坐標是:(?1,3).
故選B.【點睛】此題主要考查了利用配方法求二次函數(shù)頂點式以及求頂點坐標,此題型是考查重點,應(yīng)熟練掌握.二、填空題(每題4分,共24分)13、【分析】作OE⊥CD,交圓于F,則OC=OF=,,利用勾股定理可得再根據(jù)垂徑定理即可得出答案【詳解】作OE⊥CD,交圓于F,則OC=OF=,所以CD=2CE,F是的中點因為弦,的中點與點重合,所以,所以所以CD=2CE=故答案是:【點睛】考核知識點:垂徑定理.理解垂徑定理,構(gòu)造直角三角形是關(guān)鍵.14、∠ACP=∠B(或).【分析】由于△ACP與△ABC有一個公共角,所以可利用兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似或有兩組角對應(yīng)相等的兩個三角形相似進行添加條件.【詳解】解:∵∠PAC=∠CAB,∴當∠ACP=∠B時,△ACP∽△ABC;當時,△ACP∽△ABC.故答案為:∠ACP=∠B(或).【點睛】本題考查了相似三角形的判定:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似:有兩組角對應(yīng)相等的兩個三角形相似.15、【分析】根據(jù)題意利用根的判別式進行分析計算,即可求出的取值范圍.【詳解】解:∵關(guān)于的方程沒有實數(shù)根,∴,解得.故答案為:.【點睛】本題考查根的判別式相關(guān),熟練掌握一元二次方程中,當時,方程沒有實數(shù)根是解答此題的關(guān)鍵.16、30°或150°【解析】與半徑相等的弦與兩條半徑可構(gòu)成等邊三角形,所以這條弦所對的圓心角為60°,而弦所對的圓周角兩個,根據(jù)圓內(nèi)接四邊形對角互補可知,這兩個圓周角互補,其中一個圓周角的度數(shù)為12×60故答案為30°或150°.17、M【分析】由函數(shù)解析式可知函數(shù)關(guān)于y軸對稱,即可求解;【詳解】解:由已知可知函數(shù)y=的圖象關(guān)于y軸對稱,所以點M是原點;
故答案為:M.【點睛】本題考查反比例函數(shù)的圖象及性質(zhì);熟練掌握函數(shù)的解析式與函數(shù)圖象的關(guān)系是解題的關(guān)鍵.18、【解析】本題應(yīng)分別求出正方形的總面積和陰影部分的面積,用陰影部分的面積除以總面積即可得出概率.【詳解】解:小蟲落到陰影部分的概率=,故答案為:.【點睛】本題考查的是概率的公式,用到的知識點為:概率=相應(yīng)的面積與總面積之比.三、解答題(共78分)19、(1)證明見解析;(2)陰影部分面積為【解析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設(shè)⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.20、“畫樹狀圖”或“列表”見解析;(都選金山為第一站).【分析】畫樹形圖得出所有等可能的情況數(shù),找出小明和小麗都選金山為第一站的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖得:
∵共有9種等可能的結(jié)果,小明和小麗都選金山為第一站的只有1種情況,
∴(都選金山為第一站).【點睛】本題考查的是用列表法或樹狀圖法求概率.樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)見解析;(2)【分析】(1)連接OB,根據(jù)圓周角定理證得∠CBD=90°,然后根據(jù)等邊對等角以及等量代換,證得∠OBF=90°即可證得;(2)首先利用垂徑定理求得BE的長,根據(jù)勾股定理求得圓的半徑.【詳解】(1)連接OB.∵CD是直徑,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠CBF+∠OBC=∠OBD+∠OBC,∴∠OBF=∠CBD=90°,即OB⊥BF,∴FB是圓的切線;(2)∵CD是圓的直徑,CD⊥AB,∴,設(shè)圓的半徑是R,在直角△OEB中,根據(jù)勾股定理得:,解得:【點睛】本題考查了切線的判定,圓周角定理,勾股定理,熟練掌握切線的判定定理是解題的關(guān)鍵.22、(1)詳見解析;(2)詳見解析;(3)【分析】(1)利用等腰三角形的性質(zhì)和三角形內(nèi)角和即可得出結(jié)論;
(2)先判斷出OE=AC,即可得出OE=BD,即可得出結(jié)論;
(3)先判斷出△ABE是底角是30°的等腰三角形,即可構(gòu)造直角三角形即可得出結(jié)論.【詳解】(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,(2)如圖②,連接與,交點為,連接四邊形是矩形(3)如圖3,過點做于點四邊形是矩形,是等邊三角形,由(2)知,在中,,【點睛】此題是四邊形綜合題,主要考查了矩形是性質(zhì),直角三角形的性質(zhì)和判定,含30°角的直角三角形的性質(zhì),三角形的內(nèi)角和公式,解(1)的關(guān)鍵是判斷出∠B=∠BAD,解(2)的關(guān)鍵是判斷出OE=AC,解(3)的關(guān)鍵是判斷出△ABE是底角為30°的等腰三角形,進而構(gòu)造直角三角形.23、(1)見解析;(2)⊙O的半徑為1.【分析】(1)根據(jù)圓周角定理即可得出∠A=∠D,∠C=∠ABD,從而可求證△AEC∽△DEB;
(2)由垂徑定理可知BE=3,設(shè)半徑為r,由勾股定理可列出方程求出r.【詳解】解:(1)根據(jù)“同弧所對的圓周角相等”,
得∠A=∠D,∠C=∠ABD,
∴△AEC∽△DEB
(2)∵CD⊥AB,O為圓心,
∴BE=AB=3,
設(shè)⊙O的半徑為r,
∵DE=1,則OE=r?1,
在Rt△OEB中,
由勾股定理得:OE2+EB2=OB2,
即:(r?1)2+32=r2,
解得r=1,即⊙O的半徑為1.【點睛】本題考查圓的綜合問題,涉及相似三角形的判定與性質(zhì),勾股定理,垂徑定理等知識,綜合程度較高,需要靈活運用所學知識.24、(1)見解析;(2);(3)①r1=1,;②△BFF'與△DEF'的面積比為或【分析】(1)連結(jié),證明,得出,則結(jié)論得證;(2)求出,,連結(jié),則,由弧長公式可得出答案;(3)①如圖3,過作于,則,四邊形是矩形,設(shè)圓的半徑為,則.,證明,由比例線段可得出的方程,解方程即可得出答案;②證明,當或時,根據(jù)相似三角形的性質(zhì)可得出答案.【詳解】解:(1)連結(jié)DO,∵BD平分∠ABC,∴∠CBD=∠ABD,∵DO=BO,∴∠ODB=∠OBD,∴∠CBD=∠ODB.∴DO∥BC,∵∠C=90°,∴∠ADO=90°,∴AC是⊙O的切線;(2)∵E是AO中點,∴AE=EO=DO=BO=,∴sin∠A=,∴∠A=30°,∠B=60°,連結(jié)FO,則∠BOF=60°,∴=.(3)①如圖3,連結(jié)OD,過O作OM⊥BC于M,則BM=FM,四邊形CDOM是矩形設(shè)圓的半徑為r,則OA=5﹣r.BM=FM=r﹣,∵DO∥BC,∴∠AOD=∠OBM,而∠ADO=90°=∠OMB,∴△ADO∽△OMB,∴,即,解之得r1=1,.②∵在(1)中∠CBD=∠ABD,∴DE=DF,∵BE是⊙O的直徑,∴∠BDE=90°,而F、F'關(guān)于BD軸對稱,∴BD⊥FF',BF=BF',∴DE∥FF',∴∠DEF'=∠BF'F,∴△DEF'∽∠BFF',當r=1時,AO=4,DO=1,BO=1,由①知,,,,,,,與的面積之比,同理可得,當時.時,與的面積比.與的面積比為或.【點睛】本題是圓的綜合題,考查了直角三角形30度角的性質(zhì),切線的判定和性質(zhì),等腰三角形的判定,圓周角定理,勾股定理,軸對稱的性質(zhì),相似三角形的判定和性質(zhì)等知識,正確作出輔助線,熟練運用圓的相關(guān)性質(zhì)定理是解題的關(guān)鍵.25、(1)y=-10x2+100x+1,0<x≤2(2)每件商品的售價定為5元時,每個月可獲得最大利潤,最大月利潤是3元【解析】解:(1)設(shè)每件商品的售價上漲x元(x為正整數(shù)),則每件商品的利潤為:(60-50+x)元,總銷量為:(200-10x)件,商品利潤為:y=(60-50+x)(200-10x)=-10x2+100x+1.∵原售價為每件60元,每件售價不能高于72元,∴0<x≤2.(2)∵y=-10x2+100x+1=-10(x-5)2+3,∴當x=5時,最大月利潤y=3.答:每件商品的售價定為5元時,每個月可獲得最大利潤,最大月利潤是3元.(1)根據(jù)題意,得出每件商品的利潤以及商品總的銷量,即可得出y與x的函數(shù)關(guān)系式.(2)根據(jù)題意利用配方法得出二次函數(shù)的頂點形式(或用公式法),從而得出當x=5時得出y的最大值.26、[問題發(fā)現(xiàn)]15;[問題探究];[拓展應(yīng)用]①出口E設(shè)在距直線OB的7.1米處可以使四邊形CODE的面積最大為60平方米,②出口E距直線OB的距離為米.【分析】[問題發(fā)現(xiàn)]△PAB的底邊AB一定,面積最大也就是P點到AB的距離最大,故當OP⊥AB時,時最大,值是5,再計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡(luò)安全服務(wù)項目團隊薪酬
- 互聯(lián)網(wǎng)公司食堂管理辦法
- 綠化種植合同范本解讀
- 自建房屋建筑改建合同
- 農(nóng)家樂租賃合同:美食烹飪
- 網(wǎng)球場電力供應(yīng)供用電管理辦法
- 石油化工貨車租賃合同協(xié)議書范本
- 訂單分析與預(yù)測模型
- 倉儲物流招投標實施細則
- 高速公路改擴建中央分隔帶光纜保通實施性方案
- 用電檢查培訓
- 弘揚偉大長征精神圖文.ppt
- 西南石油大學 《油藏工程》教學提綱+復(fù)習提綱)PPT精品文檔
- 六年級數(shù)學下冊 圓錐的體積教案 西師大版 教案
- 企業(yè)質(zhì)量管理體系程序文件(全套)
- 莫迪溫產(chǎn)品介紹
- 天津市寶坻區(qū)土地利用總體規(guī)劃(2015-2020年)
- 話劇《阮玲玉》
- 電子商務(wù)十大風云人物
- [專業(yè)英語考試復(fù)習資料]專業(yè)八級分類模擬41
評論
0/150
提交評論